• Department of Plastic Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang Jiangxi, 330006, P.R.China;
YI Yangyan, Email: yyy0218@126.com
Export PDF Favorites Scan Get Citation

Objective To explore the possibility of constructing tissue engineered adipose by adipose tissue derived extracellular vesicles (hAT-EV) combined with decellularized adipose tissue (DAT) scaffolds, and to provide a new therapy for soft tissue defects.Methods The adipose tissue voluntarily donated by the liposuction patient was divided into two parts, one of them was decellularized and observed by HE and Masson staining and scanning electron microscope (SEM). Immunohistochemical staining and Western blot detection for collagen type Ⅰ and Ⅳ and laminin were also employed. Another one was incubated with exosome-removed complete medium for 48 hours, then centrifuged to collect the medium and to obtain hAT-EV via ultracentrifugation. The morphology of hAT-EV was observed by transmission electron microscopy; the nanoparticle tracking analyzer (NanoSight) was used to analyze the size distribution; Western blot was used to analyse membrane surface protein of hAT-EV. Adipose derived stem cells (ADSCs) were co-cultured with PKH26 fluorescently labeled hAT-EV, confocal fluorescence microscopy was used to observe the uptake of hAT-EV by ADSCs. Oil red O staining was used to evaluate adipogenic differentiation after hAT-EV and ADSCs co-cultured for 15 days. The DAT was scissored and then injected into the bilateral backs of 8 C57 mice (6-week-old). In experimental group, 0.2 mL hAT-EV was injected weekly, and 0.2 mL PBS was injected weekly in control group. After 12 weeks, the mice were sacrificed, and the new fat organisms on both sides were weighed. The amount of new fat was evaluated by HE and peri-lipoprotein immunofluorescence staining to evaluate the ability of hAT-EV to induce adipogenesis in vivo.Results After acellularization of adipose tissue, HE and Masson staining showed that DAT was mainly composed of loosely arranged collagen with no nucleus; SEM showed that no cells and cell fragments were found in DAT, and thick fibrous collagen bundles could be seen; immunohistochemical staining and Western blot detection showed that collagen type Ⅰ and Ⅳ and laminin were retained in DAT. It was found that hAT-EV exhibited a spherical shape of double-layer envelope, with high expressions of CD63, apoptosis-inducible factor 6 interacting protein antibody, tumor susceptibility gene 101, and the particle size of 97.9% hAT-EV ranged from 32.67 nmto 220.20 nm with a peak at 91.28 nm. Confocal fluorescence microscopy and oil red O staining showed that hAT-EV was absorbed by ADSCs and induced adipogenic differentiation. In vivo experiments showed that the wet weight of fat new organisms in the experimental group was significantly higher than that in the control group (t=2.278, P=0.048). HE staining showed that the structure of lipid droplets in the experimental group was more than that in the control group, and the collagen content in the control group was higher than that in the experimental group. The proportion of new fat in the experimental group was significantly higher than that in the control group ( t=4.648, P=0.017).Conclusion DAT carrying hAT-EV can be used as a new method to induce adipose tissue regeneration and has a potential application prospect in the repair of soft tissue defects.

Citation: NIE Jiaying, YI Yangyan, ZHU Yuanzheng. Construction of tissue engineered adipose by human adipose tissue derived extracellular vesicle combined with decellularized adipose tissues scaffold. Chinese Journal of Reparative and Reconstructive Surgery, 2020, 34(2): 226-233. doi: 10.7507/1002-1892.201903064 Copy

Copyright © the editorial department of Chinese Journal of Reparative and Reconstructive Surgery of West China Medical Publisher. All rights reserved

  • Previous Article

    Effect of circulating estrogen level on the outcome of free fat grafting in nude mice
  • Next Article

    Experimental study of human amniotic mesenchymal stem cell exosome promoting fibroblasts migration through microRNA-135a