1. |
Vanek P, Bradac O, Konopkova R, et al. Treatment of thoracolumbar trauma by short-segment percutaneous transpedicular screw instrumentation: prospective comparative study with a minimum 2-year follow-up. J Neurosurg Spine, 2014, 20(2): 150-156.
|
2. |
Neo M, Sakamoto T, Fujibayashi S, et al. The clinical risk of vertebral artery injury from cervical pedicle screws inserted in degenerative vertebrae. Spine (Phila Pa 1976), 2005, 30(24): 2800-2805.
|
3. |
Wang H, Zhou Y, Li C, et al. Comparison of open versus percutaneous pedicle screw fixation using the sextant system in the treatment of traumatic thoracolumbar fractures. Clin Spine Surg, 2017, 30(3): E239-E246.
|
4. |
Sun XY, Zhang XN, Hai Y. Percutaneous versus traditional and paraspinal posterior open approaches for treatment of thoracolumbar fractures without neurologic deficit: a meta-analysis. Eur Spine J, 2017, 26(5): 1418-1431.
|
5. |
Arts MP, Nieborg A, Brand R, et al. Serum creatine phosphokinase as an indicator of muscle injury after various spinal and nonspinal surgical procedures. J Neurosurg Spine, 2007, 7(3): 282-286.
|
6. |
Kumbhare D, Parkinson W, Dunlop B. Validity of serum creatine kinase as a measure of muscle injury produced by lumbar surgery. J Spinal Disord Tech, 2008, 21(1): 49-54.
|
7. |
Lehmann W, Ushmaev A, Ruecker A, et al. Comparison of open versus percutaneous pedicle screw insertion in a sheep model. Eur Spine J, 2008, 17(6): 857-863.
|
8. |
Kantelhardt SR, Martinez R, Baerwinkel S, et al. Perioperative course and accuracy of screw positioning in conventional, open robotic-guided and percutaneous robotic-guided, pedicle screw placement. Eur Spine J, 2011, 20(6): 860-868.
|
9. |
Keric N, Doenitz C, Haj A, et al. Evaluation of robot-guided minimally invasive implantation of 2067 pedicle screws. Neurosurg Focus, 2017, 42(5): E11.
|
10. |
Johnson N. Imaging, navigation, and robotics in spine surgery. Spine (Phila Pa 1976), 2016, 41(Suppl 7): S32.
|
11. |
Yang M, Zhao Q, Hao D, et al. Comparison of clinical results between novel percutaneous pedicle screw and traditional open pedicle screw fixation for thoracolumbar fractures without neurological deficit. Int Orthop, 2019, 43(7): 1749-1754.
|
12. |
van Dijk JD, van den Ende RP, Stramigioli S, et al. Clinical pedicle screw accuracy and deviation from planning in robot-guided spine surgery: robot-guided pedicle screw accuracy. Spine (Phila Pa 1976), 2015, 40(17): E986-991.
|
13. |
Tian W, Fan MX, Liu YJ. Robot-assisted percutaneous pedicle screw placement using three-dimensional fluoroscopy: a preliminary clinical study. Chin Med J (Engl), 2017, 130(13): 1617-1618.
|
14. |
Roser F, Tatagiba M, Maier G. Spinal robotics: current applications and future perspectives. Neurosurgery, 2013, 72(Suppl 1): 12-18.
|
15. |
Babu R, Park JG, Mehta AI, et al. Comparison of superior-level facet joint violations during open and percutaneous pedicle screw placement. Neurosurgery, 2012, 71(5): 962-970.
|
16. |
Jones-Quaidoo SM, Djurasovic M, Owens RK 2nd, et al. Superior articulating facet violation: percutaneous versus open techniques. J Neurosurg Spine, 2013, 18(6): 593-597.
|
17. |
Yang JS, He B, Tian F, et al. Accuracy of Robot-assisted percutaneous pedicle screw placement for treatment of lumbar spondylolisthesis: a comparative cohort study. Med Sci Monit, 2019, 25: 2479-2487.
|
18. |
Archavlis E, Amr N, Kantelhardt SR, et al. Rates of upper facet joint violation in minimally invasive percutaneous and open instrumentation: a comparative cohort study of different insertion techniques. J Neurol Surg A Cent Eur Neurosurg, 2018, 79(1): 1-8.
|
19. |
杨俊松, 郝定均, 刘团江, 等. 脊柱机器人与透视辅助下经皮植钉治疗腰椎滑脱症中植钉精度的对比研究. 中国修复重建外科杂志, 2018, 32(11): 1371-1376.
|