Citation: CHEN Quan, WU Limin, DAWA Cili, SHEN Bin. Research progress on the role of chondrocyte mitochondrial homeostasis imbalance in the pathogenesis of osteoarthritis. Chinese Journal of Reparative and Reconstructive Surgery, 2023, 37(6): 748-757. doi: 10.7507/1002-1892.202303006 Copy
Copyright © the editorial department of Chinese Journal of Reparative and Reconstructive Surgery of West China Medical Publisher. All rights reserved
1. | Vinatier C, Merceron C, Guicheux J. Osteoarthritis: from pathogenic mechanisms and recent clinical developments to novel prospective therapeutic options. Drug Discov Today, 2016, 21(12): 1932-1937. |
2. | Ruiz D, Koenig L, Dall TM, et al. The direct and indirect costs to society of treatment for end-stage knee osteoarthritis. J Bone Joint Surg (Am), 2013, 95(16): 1473-1480. |
3. | Friedman JR, Nunnari J. Mitochondrial form and function. Nature, 2014, 505(7483): 335-343. |
4. | Blanco FJ, Rego I, Ruiz-Romero C. The role of mitochondria in osteoarthritis. Nat Rev Rheumatol, 2011, 7(3): 161-169. |
5. | Blanco FJ, Valdes AM, Rego-Pérez I. Mitochondrial DNA variation and the pathogenesis of osteoarthritis phenotypes. Nat Rev Rheumatol, 2018, 14(6): 327-340. |
6. | López-Armada MJ, Caramés B, Martín MA, et al. Mitochondrial activity is modulated by TNFalpha and IL-1beta in normal human chondrocyte cells. Osteoarthritis Cartilage, 2006, 14(10): 1011-1022. |
7. | Vázquez-Mosquera ME, Fernández-Moreno M, Cortés-Pereira E, et al. Oleate prevents palmitate-induced mitochondrial dysfunction in chondrocytes. Front Physiol, 2021, 12: 670753. doi: 10.3389/fphys.2021.670753. |
8. | Wang Y, Zhao X, Lotz M, et al. Mitochondrial biogenesis is impaired in osteoarthritis chondrocytes but reversible via peroxisome proliferator-activated receptor γ coactivator 1α. Arthritis Rheumatol, 2015, 67(8): 2141-2153. |
9. | Jamwal S, Blackburn JK, Elsworth JD. PPARγ/PGC1α signaling as a potential therapeutic target for mitochondrial biogenesis in neurodegenerative disorders. Pharmacol Ther, 2021, 219: 107705. doi: 10.1016/j.pharmthera.2020.107705. |
10. | Jornayvaz FR, Shulman GI. Regulation of mitochondrial biogenesis. Essays Biochem, 2010, 47: 69-84. |
11. | Li PA, Hou X, Hao S. Mitochondrial biogenesis in neurodegeneration. J Neurosci Res, 2017, 95(10): 2025-2029. |
12. | 周圣梁, 斯海波, 彭琳博, 等. 软骨细胞线粒体生物发生在骨关节炎发病机制中的作用. 中国修复重建外科杂志, 2022, 36(2): 242-248. |
13. | Chang HC, Guarente L. SIRT1 and other sirtuins in metabolism. Trends Endocrinol Metab, 2014, 25(3): 138-145. |
14. | Herzig S, Shaw RJ. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol, 2018, 19(2): 121-135. |
15. | Salminen A, Kaarniranta K. AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network. Ageing Res Rev, 2012, 11(2): 230-241. |
16. | Rebelo AP, Dillon LM, Moraes CT. Mitochondrial DNA transcription regulation and nucleoid organization. J Inherit Metab Dis, 2011, 34(4): 941-951. |
17. | Picca A, Mankowski RT, Burman JL, et al. Mitochondrial quality control mechanisms as molecular targets in cardiac ageing. Nat Rev Cardiol, 2018, 15(9): 543-554. |
18. | Picca A, Lezza AM. Regulation of mitochondrial biogenesis through TFAM-mitochondrial DNA interactions: Useful insights from aging and calorie restriction studies. Mitochondrion, 2015, 25: 67-75. |
19. | Kang C, Li Ji L. Role of PGC-1α signaling in skeletal muscle health and disease. Ann N Y Acad Sci, 2012, 1271(1): 110-117. |
20. | Zhao X, Petursson F, Viollet B, et al. Peroxisome proliferator-activated receptor γ coactivator 1α and FoxO3A mediate chondroprotection by AMP-activated protein kinase. Arthritis Rheumatol, 2014, 66(11): 3073-3082. |
21. | Soto-Hermida A, Fernández-Moreno M, Pértega-Díaz S, et al. Mitochondrial DNA haplogroups modulate the radiographic progression of Spanish patients with osteoarthritis. Rheumatol Int, 2015, 35(2): 337-344. |
22. | Petursson F, Husa M, June R, et al. Linked decreases in liver kinase B1 and AMP-activated protein kinase activity modulate matrix catabolic responses to biomechanical injury in chondrocytes. Arthritis Res Ther, 2013, 15(4): R77. doi: 10.1186/ar4254. |
23. | Chen LY, Wang Y, Terkeltaub R, et al. Activation of AMPK-SIRT3 signaling is chondroprotective by preserving mitochondrial DNA integrity and function. Osteoarthritis Cartilage, 2018, 26(11): 1539-1550. |
24. | Hardie DG. AMP-activated protein kinase: maintaining energy homeostasis at the cellular and whole-body levels. Annu Rev Nutr, 2014, 34: 31-55. |
25. | Matsuzaki T, Matsushita T, Takayama K, et al. Disruption of Sirt1 in chondrocytes causes accelerated progression of osteoarthritis under mechanical stress and during ageing in mice. Ann Rheum Dis, 2014, 73(7): 1397-1404. |
26. | Wang J, Wang K, Huang C, et al. SIRT3 Activation by dihydromyricetin suppresses chondrocytes degeneration via maintaining mitochondrial homeostasis. Int J Biol Sci, 2018, 14(13): 1873-1882. |
27. | Torrens-Mas M, Pons DG, Sastre-Serra J, et al. SIRT3 silencing sensitizes breast cancer cells to cytotoxic treatments through an increment in ROS production. J Cell Biochem, 2017, 118(2): 397-406. |
28. | Wang L, Shan H, Wang B, et al. Puerarin attenuates osteoarthritis via upregulating AMP-activated protein kinase/proliferator-activated receptor-γ coactivator-1 signaling pathway in osteoarthritis rats. Pharmacology, 2018, 102(3-4): 117-125. |
29. | Masuda I, Koike M, Nakashima S, et al. Apple procyanidins promote mitochondrial biogenesis and proteoglycan biosynthesis in chondrocytes. Sci Rep, 2018, 8(1): 7229. doi: 10.1038/s41598-018-25348-1. |
30. | Wang C, Gao Y, Zhang Z, et al. Safflower yellow alleviates osteoarthritis and prevents inflammation by inhibiting PGE2 release and regulating NF-κB/SIRT1/AMPK signaling pathways. Phytomedicine, 2020, 78: 153305. doi: 10.1016/j.phymed.2020.153305. |
31. | Li J, Zhang B, Liu WX, et al. Metformin limits osteoarthritis development and progression through activation of AMPK signalling. Ann Rheum Dis, 2020, 79(5): 635-645. |
32. | Adam-Vizi V, Chinopoulos C. Bioenergetics and the formation of mitochondrial reactive oxygen species. Trends Pharmacol Sci, 2006, 27(12): 639-645. |
33. | Hirst J. Mitochondrial complex I. Annu Rev Biochem, 2013, 82: 551-575. |
34. | Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol, 2003, 552(Pt 2): 335-344. |
35. | Gao M, Yi J, Zhu J, et al. Role of Mitochondria in Ferroptosis. Mol Cell, 2019, 73(2): 354-363. |
36. | Lei G, Mao C, Yan Y, et al. Ferroptosis, radiotherapy, and combination therapeutic strategies. Protein Cell, 2021, 12(11): 836-857. |
37. | Blanco FJ, Ochs RL, Schwarz H, et al. Chondrocyte apoptosis induced by nitric oxide. Am J Pathol, 1995, 146(1): 75-85. |
38. | Burkhardt H, Schwingel M, Menninger H, et al. Oxygen radicals as effectors of cartilage destruction. Direct degradative effect on matrix components and indirect action via activation of latent collagenase from polymorphonuclear leukocytes. Arthritis Rheum, 1986, 29(3): 379-387. |
39. | Klämfeldt A, Marklund S. Enhanced breakdown in vitro of bovine articular cartilage proteoglycans by conditional synovial medium. The effect of superoxide dismutase and catalase. Scand J Rheumatol, 1987, 16(1): 41-45. |
40. | Lepetsos P, Papavassiliou AG. ROS/oxidative stress signaling in osteoarthritis. Biochim Biophys Acta, 2016, 1862(4): 576-591. |
41. | Monboisse JC, Borel JP. Oxidative damage to collagen. EXS, 1992, 62: 323-327. |
42. | Koike M, Nojiri H, Kanazawa H, et al. Superoxide dismutase activity is significantly lower in end-stage osteoarthritic cartilage than non-osteoarthritic cartilage. PLoS One, 2018, 13(9): e0203944. doi: 10.1371/journal.pone.0203944. |
43. | Regan EA, Bowler RP, Crapo JD. Joint fluid antioxidants are decreased in osteoarthritic joints compared to joints with macroscopically intact cartilage and subacute injury. Osteoarthritis Cartilage, 2008, 16(4): 515-521. |
44. | Ruiz-Romero C, Calamia V, Mateos J, et al. Mitochondrial dysregulation of osteoarthritic human articular chondrocytes analyzed by proteomics: a decrease in mitochondrial superoxide dismutase points to a redox imbalance. Mol Cell Proteomics, 2009, 8(1): 172-189. |
45. | Scott JL, Gabrielides C, Davidson RK, et al. Superoxide dismutase downregulation in osteoarthritis progression and end-stage disease. Ann Rheum Dis, 2010, 69(8): 1502-1510. |
46. | Fu Y, Kinter M, Hudson J, et al. Aging promotes sirtuin 3-dependent cartilage superoxide dismutase 2 acetylation and osteoarthritis. Arthritis Rheumatol, 2016, 68(8): 1887-1898. |
47. | Yang J, Hu S, Bian Y, et al. Targeting cell death: pyroptosis, ferroptosis, apoptosis and necroptosis in osteoarthritis. Front Cell Dev Biol, 2022, 9: 789948. doi: 10.3389/fcell.2021.789948. |
48. | Yao X, Sun K, Yu S, et al. Chondrocyte ferroptosis contribute to the progression of osteoarthritis. J Orthop Translat, 2020, 27: 33-43. |
49. | Miao Y, Chen Y, Xue F, et al. Contribution of ferroptosis and GPX4’s dual functions to osteoarthritis progression. EBioMedicine, 2022, 76: 103847. doi: 10.1016/j.ebiom.2022.103847. |
50. | Guo Z, Lin J, Sun K, et al. Deferoxamine alleviates osteoarthritis by inhibiting chondrocyte ferroptosis and activating the Nrf2 pathway. Front Pharmacol, 2022, 13: 791376. doi: 10.3389/fphar.2022.791376. |
51. | Zhou X, Zheng Y, Sun W, et al. D-mannose alleviates osteoarthritis progression by inhibiting chondrocyte ferroptosis in a HIF-2α-dependent manner. Cell Prolif, 2021, 54(11): e13134. |
52. | Wang X, Liu Z, Peng P, et al. Astaxanthin attenuates osteoarthritis progression via inhibiting ferroptosis and regulating mitochondrial function in chondrocytes. Chem Biol Interact, 2022, 366: 110148. doi: 10.1016/j.cbi.2022.110148. |
53. | Archer SL. Mitochondrial dynamics-mitochondrial fission and fusion in human diseases. N Engl J Med, 2013, 369(23): 2236-2251. |
54. | Westermann B. Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol, 2010, 11(12): 872-884. |
55. | Youle RJ, van der Bliek AM. Mitochondrial fission, fusion, and stress. Science, 2012, 337(6098): 1062-1065. |
56. | Trewin AJ, Berry BJ, Wojtovich AP. Exercise and mitochondrial dynamics: keeping in shape with ROS and AMPK. Antioxidants (Basel), 2018, 7(1): 7. doi: 10.3390/antiox7010007. |
57. | Franco A, Kitsis RN, Fleischer JA, et al. Correcting mitochondrial fusion by manipulating mitofusin conformations. Nature, 2016, 540(7631): 74-79. |
58. | Hammerschmidt P, Ostkotte D, Nolte H, et al. CerS6-Derived Sphingolipids Interact with Mff and Promote Mitochondrial Fragmentation in Obesity. Cell, 2019, 177(6): 1536-1552. |
59. | Tilokani L, Nagashima S, Paupe V, et al. Mitochondrial dynamics: overview of molecular mechanisms. Essays Biochem, 2018, 62(3): 341-360. |
60. | Yu R, Jin SB, Lendahl U, et al. Human Fis1 regulates mitochondrial dynamics through inhibition of the fusion machinery. EMBO J, 2019, 38(8): e99748. doi: 10.15252/embj.201899748. |
61. | Lee H, Yoon Y. Mitochondrial fission and fusion. Biochem Soc Trans, 2016, 44(6): 1725-1735. |
62. | Singh M, Denny H, Smith C, et al. Presynaptic loss of dynamin-related protein 1 impairs synaptic vesicle release and recycling at the mouse calyx of Held. J Physiol, 2018, 596(24): 6263-6287. |
63. | Shin HJ, Park H, Shin N, et al. Pink1-mediated chondrocytic mitophagy contributes to cartilage degeneration in osteoarthritis. J Clin Med, 2019, 8(11): 1849. doi: 10.3390/jcm8111849. |
64. | Ryan SM, McMorrow J, Umerska A, et al. An intra-articular salmon calcitonin-based nanocomplex reduces experimental inflammatory arthritis. J Control Release, 2013, 167(2): 120-129. |
65. | Zheng Z, Xiang S, Wang Y, et al. NR4A1 promotes TNF-α-induced chondrocyte death and migration injury via activating the AMPK/Drp1/mitochondrial fission pathway. Int J Mol Med, 2020, 45(1): 151-161. |
66. | Wang FS, Kuo CW, Ko JY, et al. Irisin mitigates oxidative stress, chondrocyte dysfunction and osteoarthritis development through regulating mitochondrial integrity and autophagy. Antioxidants (Basel), 2020, 9(9): 810. doi: 10.3390/antiox9090810. |
67. | Pernas L, Scorrano L. Mito-morphosis: mitochondrial fusion, fission, and cristae remodeling as key mediators of cellular function. Annu Rev Physiol, 2016, 78: 505-531. |
68. | Filadi R, Pendin D, Pizzo P. Mitofusin 2: from functions to disease. Cell Death Dis, 2018, 9(3): 330. doi: 10.1038/s41419-017-0023-6. |
69. | Xu L, Wu Z, He Y, et al. MFN2 contributes to metabolic disorders and inflammation in the aging of rat chondrocytes and osteoarthritis. Osteoarthritis Cartilage, 2020, 28(8): 1079-1091. |
70. | Burman JL, Pickles S, Wang C, et al. Mitochondrial fission facilitates the selective mitophagy of protein aggregates. J Cell Biol, 2017, 216(10): 3231-3247. |
71. | Chen N, Guo Z, Luo Z, et al. Drp1-mediated mitochondrial fission contributes to mitophagy in paraquat-induced neuronal cell damage. Environ Pollut, 2021, 272: 116413. doi: 10.1016/j.envpol.2020.116413. |
72. | Rodríguez-Nuevo A, Díaz-Ramos A, Noguera E, et al. Mitochondrial DNA and TLR9 drive muscle inflammation upon Opa1 deficiency. EMBO J, 2018, 37(10): e96553. doi: 10.15252/embj.201796553. |
73. | Pereira RO, Tadinada SM, Zasadny FM, et al. OPA1 deficiency promotes secretion of FGF21 from muscle that prevents obesity and insulin resistance. EMBO J, 2017, 36(14): 2126-2145. |
74. | Wang B, Shao Z, Gu M, et al. Hydrogen sulfide protects against IL-1β-induced inflammation and mitochondrial dysfunction-related apoptosis in chondrocytes and ameliorates osteoarthritis. J Cell Physiol, 2021, 236(6): 4369-4386. |
75. | Yao X, Zhang J, Jing X, et al. Fibroblast growth factor 18 exerts anti-osteoarthritic effects through PI3K-AKT signaling and mitochondrial fusion and fission. Pharmacol Res, 2019, 139: 314-324. |
76. | Wang C, Yang Y, Zhang Y, et al. Protective effects of metformin against osteoarthritis through upregulation of SIRT3-mediated PINK1/Parkin-dependent mitophagy in primary chondrocytes. Biosci Trends, 2019, 12(6): 605-612. |
77. | Zhang J, Hao X, Chi R, et al. Moderate mechanical stress suppresses the IL-1β-induced chondrocyte apoptosis by regulating mitochondrial dynamics. J Cell Physiol, 2021, 236(11): 7504-7515. |
78. | Choi AM, Ryter SW, Levine B. Autophagy in human health and disease. N Engl J Med, 2013, 368(7): 651-662. |
79. | Ashrafi G, Schwarz TL. The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ, 2013, 20(1): 31-42. |
80. | Pickles S, Vigié P, Youle RJ. Mitophagy and quality control mechanisms in mitochondrial maintenance. Curr Biol, 2018, 28(4): R170-R185. |
81. | Sekine S, Youle RJ. PINK1 import regulation; a fine system to convey mitochondrial stress to the cytosol. BMC Biol, 2018, 16(1): 2. doi: 10.1186/s12915-017-0470-7. |
82. | Wang S, Deng Z, Ma Y, et al. The role of autophagy and mitophagy in bone metabolic disorders. Int J Biol Sci, 2020, 16(14): 2675-2691. |
83. | Palikaras K, Lionaki E, Tavernarakis N. Mechanisms of mitophagy in cellular homeostasis, physiology and pathology. Nat Cell Biol, 2018, 20(9): 1013-1022. |
84. | Aguirre JD, Dunkerley KM, Mercier P, et al. Structure of phosphorylated UBL domain and insights into PINK1-orchestrated parkin activation. Proc Natl Acad Sci U S A, 2017, 114(2): 298-303. |
85. | Chen Y, Wu YY, Si HB, et al. Mechanistic insights into AMPK-SIRT3 positive feedback loop-mediated chondrocyte mitochondrial quality control in osteoarthritis pathogenesis. Pharmacol Res, 2021, 166: 105497. doi: 10.1016/j.phrs.2021.105497. |
86. | Mihaylova MM, Shaw RJ. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol, 2011, 13(9): 1016-1023. |
87. | Ma L, Li Y, Peng J, et al. Discovery of the migrasome, an organelle mediating release of cytoplasmic contents during cell migration. Cell Res, 2015, 25(1): 24-38. |
88. | Jiao H, Jiang D, Hu X, et al. Mitocytosis, a migrasome-mediated mitochondrial quality-control process. Cell, 2021, 184(11): 2896-2910. |
89. | Chang J, Wang W, Zhang H, et al. The dual role of autophagy in chondrocyte responses in the pathogenesis of articular cartilage degeneration in osteoarthritis. Int J Mol Med, 2013, 32(6): 1311-1318. |
90. | Cheng NT, Meng H, Ma LF, et al. Role of autophagy in the progression of osteoarthritis: The autophagy inhibitor, 3-methyladenine, aggravates the severity of experimental osteoarthritis. Int J Mol Med, 2017, 39(5): 1224-1232. |
91. | López de Figueroa P, Lotz MK, Blanco FJ, et al. Autophagy activation and protection from mitochondrial dysfunction in human chondrocytes. Arthritis Rheumatol, 2015, 67(4): 966-976. |
92. | Lotz MK, Caramés B. Autophagy and cartilage homeostasis mechanisms in joint health, aging and OA. Nat Rev Rheumatol, 2011, 7(10): 579-587. |
93. | Xu K, He Y, Moqbel SAA, et al. SIRT3 ameliorates osteoarthritis via regulating chondrocyte autophagy and apoptosis through the PI3K/Akt/mTOR pathway. Int J Biol Macromol, 2021, 175: 351-360. |
94. | Brennan L, Khoury J, Kantorow M. Parkin elimination of mitochondria is important for maintenance of lens epithelial cell ROS levels and survival upon oxidative stress exposure. Biochim Biophys Acta Mol Basis Dis, 2017, 1863(1): 21-32. |
95. | Ansari MY, Khan NM, Ahmad I, et al. Parkin clearance of dysfunctional mitochondria regulates ROS levels and increases survival of human chondrocytes. Osteoarthritis Cartilage, 2018, 26(8): 1087-1097. |
96. | Akasaki Y, Hasegawa A, Saito M, et al. Dysregulated FOXO transcription factors in articular cartilage in aging and osteoarthritis. Osteoarthritis Cartilage, 2014, 22(1): 162-170. |
97. | Mammucari C, Milan G, Romanello V, et al. FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab, 2007, 6(6): 458-471. |
98. | Tang Q, Zheng G, Feng Z, et al. Trehalose ameliorates oxidative stress-mediated mitochondrial dysfunction and ER stress via selective autophagy stimulation and autophagic flux restoration in osteoarthritis development. Cell Death Dis, 2017, 8(10): e3081. doi: 10.1038/cddis.2017.453. |
99. | Huang LW, Huang TC, Hu YC, et al. Zinc protects chondrocytes from monosodium iodoacetate-induced damage by enhancing ATP and mitophagy. Biochem Biophys Res Commun, 2020, 521(1): 50-56. |
- 1. Vinatier C, Merceron C, Guicheux J. Osteoarthritis: from pathogenic mechanisms and recent clinical developments to novel prospective therapeutic options. Drug Discov Today, 2016, 21(12): 1932-1937.
- 2. Ruiz D, Koenig L, Dall TM, et al. The direct and indirect costs to society of treatment for end-stage knee osteoarthritis. J Bone Joint Surg (Am), 2013, 95(16): 1473-1480.
- 3. Friedman JR, Nunnari J. Mitochondrial form and function. Nature, 2014, 505(7483): 335-343.
- 4. Blanco FJ, Rego I, Ruiz-Romero C. The role of mitochondria in osteoarthritis. Nat Rev Rheumatol, 2011, 7(3): 161-169.
- 5. Blanco FJ, Valdes AM, Rego-Pérez I. Mitochondrial DNA variation and the pathogenesis of osteoarthritis phenotypes. Nat Rev Rheumatol, 2018, 14(6): 327-340.
- 6. López-Armada MJ, Caramés B, Martín MA, et al. Mitochondrial activity is modulated by TNFalpha and IL-1beta in normal human chondrocyte cells. Osteoarthritis Cartilage, 2006, 14(10): 1011-1022.
- 7. Vázquez-Mosquera ME, Fernández-Moreno M, Cortés-Pereira E, et al. Oleate prevents palmitate-induced mitochondrial dysfunction in chondrocytes. Front Physiol, 2021, 12: 670753. doi: 10.3389/fphys.2021.670753.
- 8. Wang Y, Zhao X, Lotz M, et al. Mitochondrial biogenesis is impaired in osteoarthritis chondrocytes but reversible via peroxisome proliferator-activated receptor γ coactivator 1α. Arthritis Rheumatol, 2015, 67(8): 2141-2153.
- 9. Jamwal S, Blackburn JK, Elsworth JD. PPARγ/PGC1α signaling as a potential therapeutic target for mitochondrial biogenesis in neurodegenerative disorders. Pharmacol Ther, 2021, 219: 107705. doi: 10.1016/j.pharmthera.2020.107705.
- 10. Jornayvaz FR, Shulman GI. Regulation of mitochondrial biogenesis. Essays Biochem, 2010, 47: 69-84.
- 11. Li PA, Hou X, Hao S. Mitochondrial biogenesis in neurodegeneration. J Neurosci Res, 2017, 95(10): 2025-2029.
- 12. 周圣梁, 斯海波, 彭琳博, 等. 软骨细胞线粒体生物发生在骨关节炎发病机制中的作用. 中国修复重建外科杂志, 2022, 36(2): 242-248.
- 13. Chang HC, Guarente L. SIRT1 and other sirtuins in metabolism. Trends Endocrinol Metab, 2014, 25(3): 138-145.
- 14. Herzig S, Shaw RJ. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol, 2018, 19(2): 121-135.
- 15. Salminen A, Kaarniranta K. AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network. Ageing Res Rev, 2012, 11(2): 230-241.
- 16. Rebelo AP, Dillon LM, Moraes CT. Mitochondrial DNA transcription regulation and nucleoid organization. J Inherit Metab Dis, 2011, 34(4): 941-951.
- 17. Picca A, Mankowski RT, Burman JL, et al. Mitochondrial quality control mechanisms as molecular targets in cardiac ageing. Nat Rev Cardiol, 2018, 15(9): 543-554.
- 18. Picca A, Lezza AM. Regulation of mitochondrial biogenesis through TFAM-mitochondrial DNA interactions: Useful insights from aging and calorie restriction studies. Mitochondrion, 2015, 25: 67-75.
- 19. Kang C, Li Ji L. Role of PGC-1α signaling in skeletal muscle health and disease. Ann N Y Acad Sci, 2012, 1271(1): 110-117.
- 20. Zhao X, Petursson F, Viollet B, et al. Peroxisome proliferator-activated receptor γ coactivator 1α and FoxO3A mediate chondroprotection by AMP-activated protein kinase. Arthritis Rheumatol, 2014, 66(11): 3073-3082.
- 21. Soto-Hermida A, Fernández-Moreno M, Pértega-Díaz S, et al. Mitochondrial DNA haplogroups modulate the radiographic progression of Spanish patients with osteoarthritis. Rheumatol Int, 2015, 35(2): 337-344.
- 22. Petursson F, Husa M, June R, et al. Linked decreases in liver kinase B1 and AMP-activated protein kinase activity modulate matrix catabolic responses to biomechanical injury in chondrocytes. Arthritis Res Ther, 2013, 15(4): R77. doi: 10.1186/ar4254.
- 23. Chen LY, Wang Y, Terkeltaub R, et al. Activation of AMPK-SIRT3 signaling is chondroprotective by preserving mitochondrial DNA integrity and function. Osteoarthritis Cartilage, 2018, 26(11): 1539-1550.
- 24. Hardie DG. AMP-activated protein kinase: maintaining energy homeostasis at the cellular and whole-body levels. Annu Rev Nutr, 2014, 34: 31-55.
- 25. Matsuzaki T, Matsushita T, Takayama K, et al. Disruption of Sirt1 in chondrocytes causes accelerated progression of osteoarthritis under mechanical stress and during ageing in mice. Ann Rheum Dis, 2014, 73(7): 1397-1404.
- 26. Wang J, Wang K, Huang C, et al. SIRT3 Activation by dihydromyricetin suppresses chondrocytes degeneration via maintaining mitochondrial homeostasis. Int J Biol Sci, 2018, 14(13): 1873-1882.
- 27. Torrens-Mas M, Pons DG, Sastre-Serra J, et al. SIRT3 silencing sensitizes breast cancer cells to cytotoxic treatments through an increment in ROS production. J Cell Biochem, 2017, 118(2): 397-406.
- 28. Wang L, Shan H, Wang B, et al. Puerarin attenuates osteoarthritis via upregulating AMP-activated protein kinase/proliferator-activated receptor-γ coactivator-1 signaling pathway in osteoarthritis rats. Pharmacology, 2018, 102(3-4): 117-125.
- 29. Masuda I, Koike M, Nakashima S, et al. Apple procyanidins promote mitochondrial biogenesis and proteoglycan biosynthesis in chondrocytes. Sci Rep, 2018, 8(1): 7229. doi: 10.1038/s41598-018-25348-1.
- 30. Wang C, Gao Y, Zhang Z, et al. Safflower yellow alleviates osteoarthritis and prevents inflammation by inhibiting PGE2 release and regulating NF-κB/SIRT1/AMPK signaling pathways. Phytomedicine, 2020, 78: 153305. doi: 10.1016/j.phymed.2020.153305.
- 31. Li J, Zhang B, Liu WX, et al. Metformin limits osteoarthritis development and progression through activation of AMPK signalling. Ann Rheum Dis, 2020, 79(5): 635-645.
- 32. Adam-Vizi V, Chinopoulos C. Bioenergetics and the formation of mitochondrial reactive oxygen species. Trends Pharmacol Sci, 2006, 27(12): 639-645.
- 33. Hirst J. Mitochondrial complex I. Annu Rev Biochem, 2013, 82: 551-575.
- 34. Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol, 2003, 552(Pt 2): 335-344.
- 35. Gao M, Yi J, Zhu J, et al. Role of Mitochondria in Ferroptosis. Mol Cell, 2019, 73(2): 354-363.
- 36. Lei G, Mao C, Yan Y, et al. Ferroptosis, radiotherapy, and combination therapeutic strategies. Protein Cell, 2021, 12(11): 836-857.
- 37. Blanco FJ, Ochs RL, Schwarz H, et al. Chondrocyte apoptosis induced by nitric oxide. Am J Pathol, 1995, 146(1): 75-85.
- 38. Burkhardt H, Schwingel M, Menninger H, et al. Oxygen radicals as effectors of cartilage destruction. Direct degradative effect on matrix components and indirect action via activation of latent collagenase from polymorphonuclear leukocytes. Arthritis Rheum, 1986, 29(3): 379-387.
- 39. Klämfeldt A, Marklund S. Enhanced breakdown in vitro of bovine articular cartilage proteoglycans by conditional synovial medium. The effect of superoxide dismutase and catalase. Scand J Rheumatol, 1987, 16(1): 41-45.
- 40. Lepetsos P, Papavassiliou AG. ROS/oxidative stress signaling in osteoarthritis. Biochim Biophys Acta, 2016, 1862(4): 576-591.
- 41. Monboisse JC, Borel JP. Oxidative damage to collagen. EXS, 1992, 62: 323-327.
- 42. Koike M, Nojiri H, Kanazawa H, et al. Superoxide dismutase activity is significantly lower in end-stage osteoarthritic cartilage than non-osteoarthritic cartilage. PLoS One, 2018, 13(9): e0203944. doi: 10.1371/journal.pone.0203944.
- 43. Regan EA, Bowler RP, Crapo JD. Joint fluid antioxidants are decreased in osteoarthritic joints compared to joints with macroscopically intact cartilage and subacute injury. Osteoarthritis Cartilage, 2008, 16(4): 515-521.
- 44. Ruiz-Romero C, Calamia V, Mateos J, et al. Mitochondrial dysregulation of osteoarthritic human articular chondrocytes analyzed by proteomics: a decrease in mitochondrial superoxide dismutase points to a redox imbalance. Mol Cell Proteomics, 2009, 8(1): 172-189.
- 45. Scott JL, Gabrielides C, Davidson RK, et al. Superoxide dismutase downregulation in osteoarthritis progression and end-stage disease. Ann Rheum Dis, 2010, 69(8): 1502-1510.
- 46. Fu Y, Kinter M, Hudson J, et al. Aging promotes sirtuin 3-dependent cartilage superoxide dismutase 2 acetylation and osteoarthritis. Arthritis Rheumatol, 2016, 68(8): 1887-1898.
- 47. Yang J, Hu S, Bian Y, et al. Targeting cell death: pyroptosis, ferroptosis, apoptosis and necroptosis in osteoarthritis. Front Cell Dev Biol, 2022, 9: 789948. doi: 10.3389/fcell.2021.789948.
- 48. Yao X, Sun K, Yu S, et al. Chondrocyte ferroptosis contribute to the progression of osteoarthritis. J Orthop Translat, 2020, 27: 33-43.
- 49. Miao Y, Chen Y, Xue F, et al. Contribution of ferroptosis and GPX4’s dual functions to osteoarthritis progression. EBioMedicine, 2022, 76: 103847. doi: 10.1016/j.ebiom.2022.103847.
- 50. Guo Z, Lin J, Sun K, et al. Deferoxamine alleviates osteoarthritis by inhibiting chondrocyte ferroptosis and activating the Nrf2 pathway. Front Pharmacol, 2022, 13: 791376. doi: 10.3389/fphar.2022.791376.
- 51. Zhou X, Zheng Y, Sun W, et al. D-mannose alleviates osteoarthritis progression by inhibiting chondrocyte ferroptosis in a HIF-2α-dependent manner. Cell Prolif, 2021, 54(11): e13134.
- 52. Wang X, Liu Z, Peng P, et al. Astaxanthin attenuates osteoarthritis progression via inhibiting ferroptosis and regulating mitochondrial function in chondrocytes. Chem Biol Interact, 2022, 366: 110148. doi: 10.1016/j.cbi.2022.110148.
- 53. Archer SL. Mitochondrial dynamics-mitochondrial fission and fusion in human diseases. N Engl J Med, 2013, 369(23): 2236-2251.
- 54. Westermann B. Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol, 2010, 11(12): 872-884.
- 55. Youle RJ, van der Bliek AM. Mitochondrial fission, fusion, and stress. Science, 2012, 337(6098): 1062-1065.
- 56. Trewin AJ, Berry BJ, Wojtovich AP. Exercise and mitochondrial dynamics: keeping in shape with ROS and AMPK. Antioxidants (Basel), 2018, 7(1): 7. doi: 10.3390/antiox7010007.
- 57. Franco A, Kitsis RN, Fleischer JA, et al. Correcting mitochondrial fusion by manipulating mitofusin conformations. Nature, 2016, 540(7631): 74-79.
- 58. Hammerschmidt P, Ostkotte D, Nolte H, et al. CerS6-Derived Sphingolipids Interact with Mff and Promote Mitochondrial Fragmentation in Obesity. Cell, 2019, 177(6): 1536-1552.
- 59. Tilokani L, Nagashima S, Paupe V, et al. Mitochondrial dynamics: overview of molecular mechanisms. Essays Biochem, 2018, 62(3): 341-360.
- 60. Yu R, Jin SB, Lendahl U, et al. Human Fis1 regulates mitochondrial dynamics through inhibition of the fusion machinery. EMBO J, 2019, 38(8): e99748. doi: 10.15252/embj.201899748.
- 61. Lee H, Yoon Y. Mitochondrial fission and fusion. Biochem Soc Trans, 2016, 44(6): 1725-1735.
- 62. Singh M, Denny H, Smith C, et al. Presynaptic loss of dynamin-related protein 1 impairs synaptic vesicle release and recycling at the mouse calyx of Held. J Physiol, 2018, 596(24): 6263-6287.
- 63. Shin HJ, Park H, Shin N, et al. Pink1-mediated chondrocytic mitophagy contributes to cartilage degeneration in osteoarthritis. J Clin Med, 2019, 8(11): 1849. doi: 10.3390/jcm8111849.
- 64. Ryan SM, McMorrow J, Umerska A, et al. An intra-articular salmon calcitonin-based nanocomplex reduces experimental inflammatory arthritis. J Control Release, 2013, 167(2): 120-129.
- 65. Zheng Z, Xiang S, Wang Y, et al. NR4A1 promotes TNF-α-induced chondrocyte death and migration injury via activating the AMPK/Drp1/mitochondrial fission pathway. Int J Mol Med, 2020, 45(1): 151-161.
- 66. Wang FS, Kuo CW, Ko JY, et al. Irisin mitigates oxidative stress, chondrocyte dysfunction and osteoarthritis development through regulating mitochondrial integrity and autophagy. Antioxidants (Basel), 2020, 9(9): 810. doi: 10.3390/antiox9090810.
- 67. Pernas L, Scorrano L. Mito-morphosis: mitochondrial fusion, fission, and cristae remodeling as key mediators of cellular function. Annu Rev Physiol, 2016, 78: 505-531.
- 68. Filadi R, Pendin D, Pizzo P. Mitofusin 2: from functions to disease. Cell Death Dis, 2018, 9(3): 330. doi: 10.1038/s41419-017-0023-6.
- 69. Xu L, Wu Z, He Y, et al. MFN2 contributes to metabolic disorders and inflammation in the aging of rat chondrocytes and osteoarthritis. Osteoarthritis Cartilage, 2020, 28(8): 1079-1091.
- 70. Burman JL, Pickles S, Wang C, et al. Mitochondrial fission facilitates the selective mitophagy of protein aggregates. J Cell Biol, 2017, 216(10): 3231-3247.
- 71. Chen N, Guo Z, Luo Z, et al. Drp1-mediated mitochondrial fission contributes to mitophagy in paraquat-induced neuronal cell damage. Environ Pollut, 2021, 272: 116413. doi: 10.1016/j.envpol.2020.116413.
- 72. Rodríguez-Nuevo A, Díaz-Ramos A, Noguera E, et al. Mitochondrial DNA and TLR9 drive muscle inflammation upon Opa1 deficiency. EMBO J, 2018, 37(10): e96553. doi: 10.15252/embj.201796553.
- 73. Pereira RO, Tadinada SM, Zasadny FM, et al. OPA1 deficiency promotes secretion of FGF21 from muscle that prevents obesity and insulin resistance. EMBO J, 2017, 36(14): 2126-2145.
- 74. Wang B, Shao Z, Gu M, et al. Hydrogen sulfide protects against IL-1β-induced inflammation and mitochondrial dysfunction-related apoptosis in chondrocytes and ameliorates osteoarthritis. J Cell Physiol, 2021, 236(6): 4369-4386.
- 75. Yao X, Zhang J, Jing X, et al. Fibroblast growth factor 18 exerts anti-osteoarthritic effects through PI3K-AKT signaling and mitochondrial fusion and fission. Pharmacol Res, 2019, 139: 314-324.
- 76. Wang C, Yang Y, Zhang Y, et al. Protective effects of metformin against osteoarthritis through upregulation of SIRT3-mediated PINK1/Parkin-dependent mitophagy in primary chondrocytes. Biosci Trends, 2019, 12(6): 605-612.
- 77. Zhang J, Hao X, Chi R, et al. Moderate mechanical stress suppresses the IL-1β-induced chondrocyte apoptosis by regulating mitochondrial dynamics. J Cell Physiol, 2021, 236(11): 7504-7515.
- 78. Choi AM, Ryter SW, Levine B. Autophagy in human health and disease. N Engl J Med, 2013, 368(7): 651-662.
- 79. Ashrafi G, Schwarz TL. The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ, 2013, 20(1): 31-42.
- 80. Pickles S, Vigié P, Youle RJ. Mitophagy and quality control mechanisms in mitochondrial maintenance. Curr Biol, 2018, 28(4): R170-R185.
- 81. Sekine S, Youle RJ. PINK1 import regulation; a fine system to convey mitochondrial stress to the cytosol. BMC Biol, 2018, 16(1): 2. doi: 10.1186/s12915-017-0470-7.
- 82. Wang S, Deng Z, Ma Y, et al. The role of autophagy and mitophagy in bone metabolic disorders. Int J Biol Sci, 2020, 16(14): 2675-2691.
- 83. Palikaras K, Lionaki E, Tavernarakis N. Mechanisms of mitophagy in cellular homeostasis, physiology and pathology. Nat Cell Biol, 2018, 20(9): 1013-1022.
- 84. Aguirre JD, Dunkerley KM, Mercier P, et al. Structure of phosphorylated UBL domain and insights into PINK1-orchestrated parkin activation. Proc Natl Acad Sci U S A, 2017, 114(2): 298-303.
- 85. Chen Y, Wu YY, Si HB, et al. Mechanistic insights into AMPK-SIRT3 positive feedback loop-mediated chondrocyte mitochondrial quality control in osteoarthritis pathogenesis. Pharmacol Res, 2021, 166: 105497. doi: 10.1016/j.phrs.2021.105497.
- 86. Mihaylova MM, Shaw RJ. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol, 2011, 13(9): 1016-1023.
- 87. Ma L, Li Y, Peng J, et al. Discovery of the migrasome, an organelle mediating release of cytoplasmic contents during cell migration. Cell Res, 2015, 25(1): 24-38.
- 88. Jiao H, Jiang D, Hu X, et al. Mitocytosis, a migrasome-mediated mitochondrial quality-control process. Cell, 2021, 184(11): 2896-2910.
- 89. Chang J, Wang W, Zhang H, et al. The dual role of autophagy in chondrocyte responses in the pathogenesis of articular cartilage degeneration in osteoarthritis. Int J Mol Med, 2013, 32(6): 1311-1318.
- 90. Cheng NT, Meng H, Ma LF, et al. Role of autophagy in the progression of osteoarthritis: The autophagy inhibitor, 3-methyladenine, aggravates the severity of experimental osteoarthritis. Int J Mol Med, 2017, 39(5): 1224-1232.
- 91. López de Figueroa P, Lotz MK, Blanco FJ, et al. Autophagy activation and protection from mitochondrial dysfunction in human chondrocytes. Arthritis Rheumatol, 2015, 67(4): 966-976.
- 92. Lotz MK, Caramés B. Autophagy and cartilage homeostasis mechanisms in joint health, aging and OA. Nat Rev Rheumatol, 2011, 7(10): 579-587.
- 93. Xu K, He Y, Moqbel SAA, et al. SIRT3 ameliorates osteoarthritis via regulating chondrocyte autophagy and apoptosis through the PI3K/Akt/mTOR pathway. Int J Biol Macromol, 2021, 175: 351-360.
- 94. Brennan L, Khoury J, Kantorow M. Parkin elimination of mitochondria is important for maintenance of lens epithelial cell ROS levels and survival upon oxidative stress exposure. Biochim Biophys Acta Mol Basis Dis, 2017, 1863(1): 21-32.
- 95. Ansari MY, Khan NM, Ahmad I, et al. Parkin clearance of dysfunctional mitochondria regulates ROS levels and increases survival of human chondrocytes. Osteoarthritis Cartilage, 2018, 26(8): 1087-1097.
- 96. Akasaki Y, Hasegawa A, Saito M, et al. Dysregulated FOXO transcription factors in articular cartilage in aging and osteoarthritis. Osteoarthritis Cartilage, 2014, 22(1): 162-170.
- 97. Mammucari C, Milan G, Romanello V, et al. FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab, 2007, 6(6): 458-471.
- 98. Tang Q, Zheng G, Feng Z, et al. Trehalose ameliorates oxidative stress-mediated mitochondrial dysfunction and ER stress via selective autophagy stimulation and autophagic flux restoration in osteoarthritis development. Cell Death Dis, 2017, 8(10): e3081. doi: 10.1038/cddis.2017.453.
- 99. Huang LW, Huang TC, Hu YC, et al. Zinc protects chondrocytes from monosodium iodoacetate-induced damage by enhancing ATP and mitophagy. Biochem Biophys Res Commun, 2020, 521(1): 50-56.