- Department of Spine Surgery, Xi’an Jiaotong University Affiliated Honghui Hospital, Xi’an Shaanxi, 710054, P. R. China;
Spinal robotics has rounded out twenty years in clinical, is mainly used for pedicle screw placement at present, can significantly increase the accuracy of screw placement and reduce radiation exposure to the patient and the surgeon. In the future, haptic feedback, automatic collision avoidance, and other technologies will further expand its application to complete precise operations such as decompression and correction, providing safety guarantee for the implementation of complex spinal surgery.
Citation: HAO Dingjun. Brief history and application prospect of robotic spine surgery. Chinese Journal of Reparative and Reconstructive Surgery, 2024, 38(8): 899-903. doi: 10.7507/1002-1892.202406089 Copy
Copyright © the editorial department of Chinese Journal of Reparative and Reconstructive Surgery of West China Medical Publisher. All rights reserved
1. | Lanfranco AR, Castellanos AE, Desai JP, et al. Robotic surgery: a current perspective. Ann Surg, 2004, 239(1): 14-21. |
2. | Ueda H, Suzuki R, Nakazawa A, et al. Toward autonomous collision avoidance for robotic neurosurgery in deep and narrow spaces in the brain. Procedia CIRP, 2017, 65: 110-114. |
3. | Chenin L, Peltier J, Lefranc M. Minimally invasive transforaminal lumbar interbody fusion with the ROSATM Spine robot and intraoperative flat-panel CT guidance. Acta Neurochir (Wien), 2016, 158(6): 1125-1128. |
4. | Kim VB, Chapman WH, Albrecht RJ, et al. Early experience with telemanipulative robot-assisted laparoscopic cholecystectomy using da Vinci. Surg Laparosc Endosc Percutan Tech, 2002, 12(1): 33-40. |
5. | Vierra M. Minimally invasive surgery. Annu Rev Med, 1995, 46: 147-158. |
6. | Allendorf JD, Bessler M, Whelan RL, et al. Postoperative immune function varies inversely with the degree of surgical trauma in a murine model. Surg Endosc, 1997, 11(5): 427-430. |
7. | Kwoh YS, Hou J, Jonckheere EA, et al. A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery. IEEE Trans Biomed Eng, 1988, 35(2): 153-160. |
8. | Davies B. A review of robotics in surgery. Proc Inst Mech Eng H, 2000, 214(1): 129-140. |
9. | D’Souza M, Gendreau J, Feng A, et al. Robotic-assisted spine surgery: history, efficacy, cost, and future trends. Robot Surg, 2019, 6: 9-23. |
10. | Shah J, Vyas A, Vyas D. The history of robotics in surgical specialties. Am J Robot Surg, 2014, 1(1): 12-20. |
11. | Nakayama M, Holsinger FC, Chevalier D, et al. Erratum: The dawn of robotic surgery in otolaryngology-head and neck surgery. Jpn J Clin Oncol, 2019, 49(5): 493. doi: 10.1093/jjco/hyz058. |
12. | Alkatout I, Mettler L, Maass N, et al. Robotic surgery in gynecology. J Turk Ger Gynecol Assoc, 2016, 17(4): 224-232. |
13. | Stoianovici DS, Webster RJ, Kavoussi LR. Robotic tools for minimally invasive urologic surgery. London: CRC Press. 2005. doi: 10.3109/9780203420898-58. |
14. | Ohtsuka. Minimally invasive cardiac surgery: background, current status, future and application of robotic technology. JRSJ, 2010, 18: 12-15. |
15. | Yamashita S, Yoshida Y, Iwasaki A. Robotic surgery for thoracic disease. Ann Thorac Cardiovasc Surg, 2016, 22(1): 1-5. |
16. | Jung M, Morel P, Buehler L, et al. Robotic general surgery: current practice, evidence, and perspective. Langenbecks Arch Surg, 2015, 400(3): 283-292. |
17. | Mattei TA, Rodriguez AH, Sambhara D, et al. Current state-of-the-art and future perspectives of robotic technology in neurosurgery. Neurosurg Rev, 2014, 37(3): 357-366. |
18. | Yamazaki T, Futai F, Tomita T, et al. Three-dimensional determination of mobile-bearing total knee arthroplasty kinematics using X-ray fluoroscopy. Int J CARS 5 (Suppl 1): S131-S136. https://doi.org/10.1007/s11548-010-0447-2. |
19. | Bann S, Khan M, Hernandez J, et al. Robotics in surgery. J Am Coll Surg, 2003, 196(5): 784-795. |
20. | Cobb J, Henckel J, Gomes P, et al. Hands-on robotic unicompartmental knee replacement: a prospective, randomised controlled study of the acrobot system. J Bone Joint Surg (Br), 2006, 88(2): 188-197. |
21. | Jacofsky DJ, Allen M. Robotics in arthroplasty: A comprehensive review. J Arthroplasty, 2016, 31(10): 2353-2363. |
22. | Barzilay Y, Liebergall M, Fridlander A, et al. Miniature robotic guidance for spine surgery—introduction of a novel system and analysis of challenges encountered during the clinical development phase at two spine centres. Int J Med Robot, 2006, 2(2): 146-153. |
23. | Kochanski RB, Lombardi JM, Laratta JL, et al. Image-guided navigation and robotics in spine surgery. Neurosurgery, 2019, 84(6): 1179-1189. |
24. | Huang M, Tetreault TA, Vaishnav A, et al. The current state of navigation in robotic spine surgery. Ann Transl Med, 2021, 9(1): 86. doi: 10.21037/atm-2020-ioi-07. |
25. | Ortmaier T, Weiss H, Hagen U, et al. A hands-on-robot for accurate placement of pedicle screws//Proceedings 2006 IEEE International Conference on Robotics and Automation, May 15-19, 2006. Orlando: IEEE, 2006. doi: 10.1109/ROBOT.2006.1642345. |
26. | Kim S, Chung J, Yi BJ, et al. An assistive image-guided surgical robot system using O-arm fluoroscopy for pedicle screw insertion: preliminary and cadaveric study. Neurosurgery, 2010, 67(6): 1757-1767. |
27. | Härtl R, Lam KS, Wang J, et al. Worldwide survey on the use of navigation in spine surgery. World Neurosurg, 2013, 79(1): 162-172. |
28. | Alluri RK, Avrumova F, Sivaganesan A, et al. Overview of robotic technology in spine surgery. HSS J, 2021, 17(3): 308-316. |
29. | Urakov TM, Chang KH, Burks SS, et al. Initial academic experience and learning curve with robotic spine instrumentation. Neurosurg Focus, 2017, 42(5): E4. doi: 10.3171/2017.2.FOCUS175. |
30. | Kuris EO, Anderson GM, Osorio C, et al. Development of a robotic spine surgery program: rationale, strategy, challenges, and monitoring of outcomes after implementation. J Bone Joint Surg (Am), 2022, 104(19): e83. doi: 10.2106/JBJS.22.00022. |
31. | Fatima N, Massaad E, Hadzipasic M, et al. Safety and accuracy of robot-assisted placement of pedicle screws compared to conventional free-hand technique: a systematic review and meta-analysis. Spine J, 2021, 21(2): 181-192. |
32. | Kosmopoulos V, Schizas C. Pedicle screw placement accuracy: a meta-analysis. Spine (Phila Pa 1976), 2007, 32(3): E111-E120. |
33. | Kantelhardt SR, Martinez R, Baerwinkel S, et al. Perioperative course and accuracy of screw positioning in conventional, open robotic-guided and percutaneous robotic-guided, pedicle screw placement. Eur Spine J, 2011, 20: 865-868. |
34. | Hyun SJ, Kim KJ, Jahng TA. S2 alar iliac screw placement under robotic guidance for adult spinal deformity patients: technical note. Eur Spine J, 2017, 26(8): 2198-2203. |
35. | Keric N, Doenitz C, Haj A, et al. Evaluation of robot-guided minimally invasive implantation of 2067 pedicle screws. Neurosurg Focus, 2017, 42(5): E11. doi: 10.3171/2017.2.FOCUS16552. |
36. | Davidar AD, Jiang K, Weber-Levine C, et al. Advancements in robotic-assisted spine surgery. Neurosurg Clin N Am, 2024, 35(2): 263-272. |
37. | Yang DS, Li NY, Kleinhenz DT, et al. Risk of Postoperative complications and revision surgery following robot-assisted posterior lumbar spinal fusion. Spine (Phila Pa 1976), 2020, 45(24): E1692-E1698. |
38. | Menger RP, Savardekar AR, Farokhi F, et al. A cost-effectiveness analysis of the integration of robotic spine technology in spine surgery. Neurospine, 2018, 15(3): 216-224. |
39. | Naros G, Machetanz K, Grimm F, et al. Framed and non-framed robotics in neurosurgery: A 10-year single-center experience. Int J Med Robot, 2021, 17(5): e2282. doi: 10.1002/rcs.2282. |
40. | Grimm F, Naros G, Gutenberg A, et al. Blurring the boundaries between frame-based and frameless stereotaxy: feasibility study for brain biopsies performed with the use of a head-mounted robot. J Neurosurg, 2015, 123(3): 737-742. |
41. | Green CA, Levy JS, Martino MA, et al. The current state of surgeon credentialing in the robotic era. Ann Laparosc Endosc Surg, 2020, 5: 17. doi: 10.21037/ales.2019.11.06. |
42. | Rezazadeh S, Bai WB, Sun MJ, et al. Robotic spinal surgery system with force feedback for teleoperated drilling. The Journal of Engineering, 2019, (14): 500-505. |
43. | Penn JW, Marcus HJ, Uff CEG. Fifth generation cellular networks and neurosurgery: a narrative review. World Neurosurg, 2021, 156: 96-102. |
44. | Rasouli JJ, Shao J, Neifert S, et al. Artificial intelligence and robotics in spine surgery. Global Spine J, 2021, 11(4): 556-564. |
45. | Yamanaka Y, Kamogawa J, Katagi R, et al. 3-D MRI/CT fusion imaging of the lumbar spine. Skeletal Radiol, 2010, 39(3): 285-288. |
46. | Kamogawa J, Kato O, Morizane T, et al. Virtual pathology of cervical radiculopathy based on 3D MR/CT fusion images: impingement, flattening or twisted condition of the compressed nerve root in three cases. Springerplus, 2015, 4: 123. doi: 10.1186/s40064-015-0898-6. |
47. | D’Andrea K, Dreyer J, Fahim DK. Utility of preoperative magnetic resonance imaging coregistered with intraoperative computed tomographic scan for the resection of complex tumors of the spine. World Neurosurg, 2015, 84(6): 1804-1815. |
48. | Leonard S, Wu KL, Kim Y, et al. Smart tissue anastomosis robot (STAR): a vision-guided robotics system for laparoscopic suturing. IEEE Trans Biomed Eng, 2014, 61(4): 1305-1317. |
49. | Shademan A, Decker RS, Opfermann JD, et al. Supervised autonomous robotic soft tissue surgery. Sci Transl Med, 2016, 8(337): 337ra64. doi: 10.1126/scitranslmed.aad9398. |
50. | Saeidi H, Opfermann JD, Kam M, et al. A confidence-based shared control strategy for the smart tissue autonomous robot (STAR). Rep U S, 2018, 2018: 1268-1275. |
51. | Patel V. Future of robotics in spine surgery. Spine, 2018, 43: S28. doi: 10.1097/BRS.0000000000002554. |
- 1. Lanfranco AR, Castellanos AE, Desai JP, et al. Robotic surgery: a current perspective. Ann Surg, 2004, 239(1): 14-21.
- 2. Ueda H, Suzuki R, Nakazawa A, et al. Toward autonomous collision avoidance for robotic neurosurgery in deep and narrow spaces in the brain. Procedia CIRP, 2017, 65: 110-114.
- 3. Chenin L, Peltier J, Lefranc M. Minimally invasive transforaminal lumbar interbody fusion with the ROSATM Spine robot and intraoperative flat-panel CT guidance. Acta Neurochir (Wien), 2016, 158(6): 1125-1128.
- 4. Kim VB, Chapman WH, Albrecht RJ, et al. Early experience with telemanipulative robot-assisted laparoscopic cholecystectomy using da Vinci. Surg Laparosc Endosc Percutan Tech, 2002, 12(1): 33-40.
- 5. Vierra M. Minimally invasive surgery. Annu Rev Med, 1995, 46: 147-158.
- 6. Allendorf JD, Bessler M, Whelan RL, et al. Postoperative immune function varies inversely with the degree of surgical trauma in a murine model. Surg Endosc, 1997, 11(5): 427-430.
- 7. Kwoh YS, Hou J, Jonckheere EA, et al. A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery. IEEE Trans Biomed Eng, 1988, 35(2): 153-160.
- 8. Davies B. A review of robotics in surgery. Proc Inst Mech Eng H, 2000, 214(1): 129-140.
- 9. D’Souza M, Gendreau J, Feng A, et al. Robotic-assisted spine surgery: history, efficacy, cost, and future trends. Robot Surg, 2019, 6: 9-23.
- 10. Shah J, Vyas A, Vyas D. The history of robotics in surgical specialties. Am J Robot Surg, 2014, 1(1): 12-20.
- 11. Nakayama M, Holsinger FC, Chevalier D, et al. Erratum: The dawn of robotic surgery in otolaryngology-head and neck surgery. Jpn J Clin Oncol, 2019, 49(5): 493. doi: 10.1093/jjco/hyz058.
- 12. Alkatout I, Mettler L, Maass N, et al. Robotic surgery in gynecology. J Turk Ger Gynecol Assoc, 2016, 17(4): 224-232.
- 13. Stoianovici DS, Webster RJ, Kavoussi LR. Robotic tools for minimally invasive urologic surgery. London: CRC Press. 2005. doi: 10.3109/9780203420898-58.
- 14. Ohtsuka. Minimally invasive cardiac surgery: background, current status, future and application of robotic technology. JRSJ, 2010, 18: 12-15.
- 15. Yamashita S, Yoshida Y, Iwasaki A. Robotic surgery for thoracic disease. Ann Thorac Cardiovasc Surg, 2016, 22(1): 1-5.
- 16. Jung M, Morel P, Buehler L, et al. Robotic general surgery: current practice, evidence, and perspective. Langenbecks Arch Surg, 2015, 400(3): 283-292.
- 17. Mattei TA, Rodriguez AH, Sambhara D, et al. Current state-of-the-art and future perspectives of robotic technology in neurosurgery. Neurosurg Rev, 2014, 37(3): 357-366.
- 18. Yamazaki T, Futai F, Tomita T, et al. Three-dimensional determination of mobile-bearing total knee arthroplasty kinematics using X-ray fluoroscopy. Int J CARS 5 (Suppl 1): S131-S136. https://doi.org/10.1007/s11548-010-0447-2.
- 19. Bann S, Khan M, Hernandez J, et al. Robotics in surgery. J Am Coll Surg, 2003, 196(5): 784-795.
- 20. Cobb J, Henckel J, Gomes P, et al. Hands-on robotic unicompartmental knee replacement: a prospective, randomised controlled study of the acrobot system. J Bone Joint Surg (Br), 2006, 88(2): 188-197.
- 21. Jacofsky DJ, Allen M. Robotics in arthroplasty: A comprehensive review. J Arthroplasty, 2016, 31(10): 2353-2363.
- 22. Barzilay Y, Liebergall M, Fridlander A, et al. Miniature robotic guidance for spine surgery—introduction of a novel system and analysis of challenges encountered during the clinical development phase at two spine centres. Int J Med Robot, 2006, 2(2): 146-153.
- 23. Kochanski RB, Lombardi JM, Laratta JL, et al. Image-guided navigation and robotics in spine surgery. Neurosurgery, 2019, 84(6): 1179-1189.
- 24. Huang M, Tetreault TA, Vaishnav A, et al. The current state of navigation in robotic spine surgery. Ann Transl Med, 2021, 9(1): 86. doi: 10.21037/atm-2020-ioi-07.
- 25. Ortmaier T, Weiss H, Hagen U, et al. A hands-on-robot for accurate placement of pedicle screws//Proceedings 2006 IEEE International Conference on Robotics and Automation, May 15-19, 2006. Orlando: IEEE, 2006. doi: 10.1109/ROBOT.2006.1642345.
- 26. Kim S, Chung J, Yi BJ, et al. An assistive image-guided surgical robot system using O-arm fluoroscopy for pedicle screw insertion: preliminary and cadaveric study. Neurosurgery, 2010, 67(6): 1757-1767.
- 27. Härtl R, Lam KS, Wang J, et al. Worldwide survey on the use of navigation in spine surgery. World Neurosurg, 2013, 79(1): 162-172.
- 28. Alluri RK, Avrumova F, Sivaganesan A, et al. Overview of robotic technology in spine surgery. HSS J, 2021, 17(3): 308-316.
- 29. Urakov TM, Chang KH, Burks SS, et al. Initial academic experience and learning curve with robotic spine instrumentation. Neurosurg Focus, 2017, 42(5): E4. doi: 10.3171/2017.2.FOCUS175.
- 30. Kuris EO, Anderson GM, Osorio C, et al. Development of a robotic spine surgery program: rationale, strategy, challenges, and monitoring of outcomes after implementation. J Bone Joint Surg (Am), 2022, 104(19): e83. doi: 10.2106/JBJS.22.00022.
- 31. Fatima N, Massaad E, Hadzipasic M, et al. Safety and accuracy of robot-assisted placement of pedicle screws compared to conventional free-hand technique: a systematic review and meta-analysis. Spine J, 2021, 21(2): 181-192.
- 32. Kosmopoulos V, Schizas C. Pedicle screw placement accuracy: a meta-analysis. Spine (Phila Pa 1976), 2007, 32(3): E111-E120.
- 33. Kantelhardt SR, Martinez R, Baerwinkel S, et al. Perioperative course and accuracy of screw positioning in conventional, open robotic-guided and percutaneous robotic-guided, pedicle screw placement. Eur Spine J, 2011, 20: 865-868.
- 34. Hyun SJ, Kim KJ, Jahng TA. S2 alar iliac screw placement under robotic guidance for adult spinal deformity patients: technical note. Eur Spine J, 2017, 26(8): 2198-2203.
- 35. Keric N, Doenitz C, Haj A, et al. Evaluation of robot-guided minimally invasive implantation of 2067 pedicle screws. Neurosurg Focus, 2017, 42(5): E11. doi: 10.3171/2017.2.FOCUS16552.
- 36. Davidar AD, Jiang K, Weber-Levine C, et al. Advancements in robotic-assisted spine surgery. Neurosurg Clin N Am, 2024, 35(2): 263-272.
- 37. Yang DS, Li NY, Kleinhenz DT, et al. Risk of Postoperative complications and revision surgery following robot-assisted posterior lumbar spinal fusion. Spine (Phila Pa 1976), 2020, 45(24): E1692-E1698.
- 38. Menger RP, Savardekar AR, Farokhi F, et al. A cost-effectiveness analysis of the integration of robotic spine technology in spine surgery. Neurospine, 2018, 15(3): 216-224.
- 39. Naros G, Machetanz K, Grimm F, et al. Framed and non-framed robotics in neurosurgery: A 10-year single-center experience. Int J Med Robot, 2021, 17(5): e2282. doi: 10.1002/rcs.2282.
- 40. Grimm F, Naros G, Gutenberg A, et al. Blurring the boundaries between frame-based and frameless stereotaxy: feasibility study for brain biopsies performed with the use of a head-mounted robot. J Neurosurg, 2015, 123(3): 737-742.
- 41. Green CA, Levy JS, Martino MA, et al. The current state of surgeon credentialing in the robotic era. Ann Laparosc Endosc Surg, 2020, 5: 17. doi: 10.21037/ales.2019.11.06.
- 42. Rezazadeh S, Bai WB, Sun MJ, et al. Robotic spinal surgery system with force feedback for teleoperated drilling. The Journal of Engineering, 2019, (14): 500-505.
- 43. Penn JW, Marcus HJ, Uff CEG. Fifth generation cellular networks and neurosurgery: a narrative review. World Neurosurg, 2021, 156: 96-102.
- 44. Rasouli JJ, Shao J, Neifert S, et al. Artificial intelligence and robotics in spine surgery. Global Spine J, 2021, 11(4): 556-564.
- 45. Yamanaka Y, Kamogawa J, Katagi R, et al. 3-D MRI/CT fusion imaging of the lumbar spine. Skeletal Radiol, 2010, 39(3): 285-288.
- 46. Kamogawa J, Kato O, Morizane T, et al. Virtual pathology of cervical radiculopathy based on 3D MR/CT fusion images: impingement, flattening or twisted condition of the compressed nerve root in three cases. Springerplus, 2015, 4: 123. doi: 10.1186/s40064-015-0898-6.
- 47. D’Andrea K, Dreyer J, Fahim DK. Utility of preoperative magnetic resonance imaging coregistered with intraoperative computed tomographic scan for the resection of complex tumors of the spine. World Neurosurg, 2015, 84(6): 1804-1815.
- 48. Leonard S, Wu KL, Kim Y, et al. Smart tissue anastomosis robot (STAR): a vision-guided robotics system for laparoscopic suturing. IEEE Trans Biomed Eng, 2014, 61(4): 1305-1317.
- 49. Shademan A, Decker RS, Opfermann JD, et al. Supervised autonomous robotic soft tissue surgery. Sci Transl Med, 2016, 8(337): 337ra64. doi: 10.1126/scitranslmed.aad9398.
- 50. Saeidi H, Opfermann JD, Kam M, et al. A confidence-based shared control strategy for the smart tissue autonomous robot (STAR). Rep U S, 2018, 2018: 1268-1275.
- 51. Patel V. Future of robotics in spine surgery. Spine, 2018, 43: S28. doi: 10.1097/BRS.0000000000002554.
-
Previous Article
注射硬化剂治疗腕部腱鞘囊肿引起的手指缺血坏死一例 -
Next Article
History and trends of robot-assisted spine surgery