1. |
Buda R, Ruffilli A, Parma A, et al. Partial ACL tears: anatomic reconstruction versus nonanatomic augmentation surgery. Orthopedics, 2013, 36(9): e1108-e1113.
|
2. |
Karlson JA, Steiner ME, Brown CH, et al. Anterior cruciate ligament reconstruction using gracilis and semitendinosus tendons. Comparison of through-the-condyle and over-the-top graft placements. Am J Sports Med, 1994, 22(5): 659-666.
|
3. |
Asai S, Maeyama A, Hoshino Y, et al. A comparison of dynamic rotational knee instability between anatomic single-bundle and over-the-top anterior cruciate ligament reconstruction using triaxial accelerometry. Knee Surg Sports Traumatol Arthrosc, 2014, 22(5): 972-978.
|
4. |
Samitier G, Marcano AI, Alentorn-Geli E, et al. Failure of anterior cruciate ligament reconstruction. Arch Bone Jt Surg, 2015, 3(4): 220-240.
|
5. |
Sarraj M, de Sa D, Shanmugaraj A, et al. Over-the-top ACL reconstruction yields comparable outcomes to traditional ACL reconstruction in primary and revision settings: a systematic review. Knee Surg Sports Traumatol Arthrosc, 2019, 27(2): 427-444.
|
6. |
Alentorn-Geli E, Seijas R, Martínez-De la Torre A, et al. Effects of autologous adipose-derived regenerative stem cells administered at the time of anterior cruciate ligament reconstruction on knee function and graft healing. J Orthop Surg (Hong Kong), 2019, 27(3): 2309499019867580. doi: 10.1177/2309499019867580.
|
7. |
Liu S, Li H, Tao H, et al. A randomized clinical trial to evaluate attached hamstring anterior cruciate ligament graft maturity with magnetic resonance imaging. Am J Sports Med, 2018, 46(5): 1143-1149.
|
8. |
Li H, Chen J, Li H, et al. MRI-based ACL graft maturity does not predict clinical and functional outcomes during the first year after ACL reconstruction. Knee Surg Sports Traumatol Arthrosc, 2017, 25(10): 3171-3178.
|
9. |
Zhang Y, Liu S, Chen Q, et al. Maturity progression of the entire anterior cruciate ligament graft of insertion-preserved hamstring tendons by 5 years: a prospective randomized controlled study based on magnetic resonance imaging evaluation. Am J Sports Med, 2020, 48(12): 2970-2977.
|
10. |
Kleiner JB, Amiel D, Harwood FL, et al. Early histologic, metabolic, and vascular assessment of anterior cruciate ligament autografts. J Orthop Res, 1989, 7(2): 235-242.
|
11. |
Proffen BL, Haslauer CM, Harris CE, et al. Mesenchymal stem cells from the retropatellar fat pad and peripheral blood stimulate ACL fibroblast migration, proliferation, and collagen gene expression. Connect Tissue Res, 2013, 54(1): 14-21.
|
12. |
Laketic D, Simic M, Boljanovic J, et al. Microanatomical characteristics of arterial vascularization of the anterior cruciate ligament. 2022, 150(9-10): 575-580.
|
13. |
Kernkamp WA, Varady NH, Li JS, et al. An in vivo prediction of anisometry and strain in anterior cruciate ligament reconstruction—A combined magnetic resonance and dual fluoroscopic imaging analysis. Arthroscopy, 2018, 34(4): 1094-1103.
|
14. |
Paschos NK, Howell SM. Anterior cruciate ligament reconstruction: principles of treatment. EFORT Open Rev, 2017, 1(11): 398-408.
|
15. |
Melhorn JM, Henning CE. The relationship of the femoral attachment site to the isometric tracking of the anterior cruciate ligament graft. Am J Sports Med, 1987, 15(6): 539-542.
|
16. |
Petersen W, Tillmann B. Structure and vascularization of the cruciate ligaments of the human knee joint. Anat Embryol (Berl), 1999, 200(3): 325-334.
|
17. |
Dong S, Xie G, Zhang Y, et al. Ligamentization of autogenous hamstring grafts after anterior cruciate ligament reconstruction: Midterm versus long-term results. Am J Sports Med, 2015, 43(8): 1908-1917.
|
18. |
Sánchez M, Anitua E, Azofra J, et al. Ligamentization of tendon grafts treated with an endogenous preparation rich in growth factors: gross morphology and histology. Arthroscopy, 2010, 26(4): 470-480.
|
19. |
Nyland J, Huffstutler A, Faridi J, et al. Cruciate ligament healing and injury prevention in the age of regenerative medicine and technostress: homeostasis revisited. Knee Surg Sports Traumatol Arthrosc, 2020, 28(3): 777-789.
|
20. |
Chen W, Sun Y, Gu X, et al. Conditioned medium of human bone marrow-derived stem cells promotes tendon-bone healing of the rotator cuff in a rat model. Biomaterials, 2021, 271: 120714. doi: 10.1016/j.biomaterials.2021.120714.
|