1. |
Luo J, Dong X, Hu J. Effect of nursing intervention via a chatting tool on the rehabilitation of patients after total hip arthroplasty. J Orthop Surg Res, 2019, 14(1): 417. doi: 10.1186/s13018-019-1483-4.
|
2. |
Fabrés Martín C, Ventura Parellada C, Herrero Antón de Vez H, et al. Telemedicine approach for patient follow-up after total knee and reverse total shoulder arthroplasty: a pilot study. Int J Comput Assist Radiol Surg, 2023, 18(3): 595-602.
|
3. |
Hansjee S, Giebaly DE, Shaarani SR, et al. Follow-up after arthroplasty surgery: a changing landscape. Bone Joint J, 2022, 104-B(10): 1104-1109.
|
4. |
Guo Y, Li D, Wu YB, et al. Mobile health-based home rehabilitation education improving early outcomes after anterior cruciate ligament reconstruction: A randomized controlled clinical trial. Front Public Health, 2023, 10: 1042167. doi: 10.3389/fpubh.2022.1042167.
|
5. |
Wu WY, Zhang YG, Zhang YY, et al. Clinical effectiveness of home-based telerehabilitation program for geriatric hip fracture following total hip replacement. Orthop Surg, 2023, 15(2): 423-431.
|
6. |
Zhang YY, Zhang YG, Li Z, et al. Effect of home-based telerehabilitation on the postoperative rehabilitation outcome of hip fracture in the aging population. Orthop Surg, 2022, 14(8): 1768-1777.
|
7. |
师庆科, 郑涛. 大型三甲医院患者智能随访语音平台设计与应用. 中国数字医学, 2021, 16(8): 22-27.
|
8. |
王红迁, 汪鹏, 左锋, 等. 医疗智能语音识别系统的研发与应用. 中国数字医学, 2018, 39(6): 30-33.
|
9. |
van Buchem MM, Boosman H, Bauer MP, et al. The digital scribe in clinical practice: a scoping review and research agenda. NPJ Digit Med, 2021, 4(1): 57. doi: 10.1038/s41746-021-00432-5.
|
10. |
Quiroz JC, Laranjo L, Kocaballi AB, et al. Challenges of developing a digital scribe to reduce clinical documentation burden. NPJ Digit Med, 2019, 2: 114. doi: 10.1038/s41746-019-0190-1.
|
11. |
Wang J, Lavender M, Hoque E, et al. A patient-centered digital scribe for automatic medical documentation. JAMIA Open, 2021, 4(1): ooab003. doi: 10.1093/jamiaopen/ooab003.
|
12. |
Bibault JE, Chaix B, Nectoux P, et al. Healthcare ex machina: Are conversational agents ready for prime time in oncology? Clinical Transl Radiat Oncol, 2019, 16: 55-59.
|
13. |
Bian Y, Xiang Y, Tong B, et al. Artificial intelligence-assisted system in postoperative follow-up of orthopedic patients: Exploratory quantitative and qualitative study. J Med Internet Res, 2020, 22(5): e16896. doi: 10.2196/16896.
|
14. |
Moore MR, Galetta MS, Schwarzkopf R, et al. Patient satisfaction and interest in telemedicine visits following total knee and hip replacement surgery. Telemed J E Health, 2022, 28(9): 1309-1316.
|
15. |
Wang Q, Hunter S, Lee RL, et al. The effectiveness of a mobile application-based programme for rehabilitation after total hip or knee arthroplasty: A randomised controlled trial. Int J Nurs Stud, 2023, 140: 104455. doi: 10.1016/j.ijnurstu.2023.104455.
|
16. |
Murphy B, Carroll P, Daly R, et al. Development and service evaluation of an ad hoc virtual arthroplasty clinic during COVID-19: Experiences from Irish National Orthopaedic Hospital. Malays Orthop J, 2022, 16(2): 46-54.
|
17. |
Sumargono E, Anastasia M, Saleh I, et al. The role of virtual clinics in postoperative total knee replacement surgery follow-up during covid-19 pandemic. Adv Orthop, 2022, 2022: 9558511. doi: 10.1155/2022/9558511.
|
18. |
Joseph V, Nagy MT, Fountain J. Cost analysis on virtual clinic follow-up after primary joint arthroplasty. J Clin Orthop Trauma, 2021, 19: 89-93.
|
19. |
Lim R, Du J, Calligeros K. Virtual arthroplasty clinic: a single centre experience: commentary on progress, cost savings and patient retention. ANZ J Surg, 2022, 92(9): 2242-2246.
|
20. |
Preston NJ, McHugh GA, Hensor E, et al. Feasibility testing of a standardised virtual clinic for follow-up of patients after hip and knee arthroplasty. Ann R Coll Surg Engl, 2023, 105(3): 252-262.
|
21. |
El Ashmawy AH, Dowson K, El-Bakoury A, et al. Effectiveness, patient satisfaction, and cost reduction of virtual joint replacement clinic follow-up of hip and knee arthroplasty. J Arthroplasty, 2021, 36(3): 816. e1-822. e1.
|
22. |
Fisher R, Hamilton V, Reader S, et al. Virtual arthroplasty follow-up: five-year data from a district general hospital. Ann R Coll Surg Engl, 2020, 102(3): 220-224.
|
23. |
Parkes RJ, Palmer J, Wingham J, et al. Is virtual clinic follow-up of hip and knee joint replacement acceptable to patients and clinicians? A sequential mixed methods evaluation. BMJ Open Qual, 2019, 8(1): e000502. doi: 10.1136/bmjoq-2018-000502.
|
24. |
Giunta NM, Paladugu PS, Bernstein DN, et al. Telemedicine hip and knee arthroplasty experience during COVID-19. J Arthroplasty, 2022, 37(8S): S814. e2-S818. e2.
|
25. |
于明峰, 梁爽, 祝文涛, 等. 探索基于云平台的髋关节置换术后随访管理创新模式. 骨科, 2018, 9(3): 238-240.
|
26. |
Sadoughi F, Erfannia L. Health information system in a cloud computing context. Stud Health Technol Inform, 2017, 236: 290-297.
|
27. |
Bell K, Warnick E, Nicholson K, et al. Patient adoption and utilization of a web-based and mobile-based portal for collecting outcomes after elective orthopedic surgery. Am J Med Qual, 2018, 33(6): 649-656.
|
28. |
Valenzuela W, Balsiger F, Wiest R, et al. Medical-blocks-a platform for exploration, management, analysis, and sharing of data in biomedical research: System development and integration results. JMIR Form Res, 2022, 6(4): e32287. doi: 10.2196/32287.
|
29. |
Campbell K, Louie P, Levine B, et al. Using patient engagement platforms in the postoperative management of patients. Curr Rev Musculoskelet Med, 2020, 13(4): 479-484.
|
30. |
Alexander JS, Redfern RE, Duwelius PJ, et al. Use of a smartphone-based care platform after primary partial and total knee arthroplasty: 1-year follow-up of a prospective randomized controlled trial. J Arthroplasty, 2023, 38(7 Suppl 2): S208-S214.
|
31. |
Knapp PW, Keller RA, Mabee KA, et al. Quantifying patient engagement in total joint arthroplasty using digital application-based technology. J Arthroplasty, 2021, 36(9): 3108-3117.
|
32. |
Sosa A, Heineman N, Thomas K, et al. Improving patient health engagement with mobile texting: A pilot study in the head and neck postoperative setting. Head & Neck, 2017, 39(5): 988-995.
|
33. |
Zhang X, Chen X, Kourkoumelis N, et al. A social media-promoted educational community of joint replacement patients using the WeChat App: Survey study. JMIR Mhealth Uhealth, 2021, 9(3): e18763. doi: 10.2196/18763.
|
34. |
Wang J, Tong Y, Jiang Y, et al. The effectiveness of extended care based on Internet and home care platform for orthopaedics after hip replacement surgery in China. J Clin Nurs, 2018, 27(21-22): 4077-4088.
|
35. |
Nuevo M, Rodríguez-Rodríguez D, Jauregui R, et al. Telerehabilitation following fast-track total knee arthroplasty is effective and safe: a randomized controlled trial with the ReHub® platform. Disabil Rehabil, 2024, 46(12): 2629-2639.
|
36. |
Sveikata T, Porvaneckas N, Kanopa P, et al. Age, sex, body mass index, education, and social support influence functional results after total knee arthroplasty. Geriatr Orthop Surg Rehabil, 2017, 8(2): 71-77.
|
37. |
Ulivi M, Orlandini L, Meroni V, et al. Remote management of patients after total joint arthroplasty via a web-based registry during the COVID-19 pandemic. Healthcare (Basel), 2021, 9(10): 1296. doi: 10.3390/healthcare9101296.
|
38. |
Dong M, Fang B, Li J, et al. Wearable sensing devices for upper limbs: A systematic review. Proc Inst Mech Eng H, 2021, 235(1): 117-130.
|
39. |
Azodo I, Williams R, Sheikh A, et al. Opportunities and challenges surrounding the use of data from wearable sensor devices in health care: Qualitative interview study. J Med Internet Res, 2020, 22(10): e19542. doi: 10.2196/19542.
|
40. |
Yang C, Shang L, Yao S, et al. Cost, time savings and effectiveness of wearable devices for remote monitoring of patient rehabilitation after total knee arthroplasty: Study protocol for a randomized controlled trial. J Orthop Surg Res, 2023, 18(1): 461. doi: 10.1186/s13018-023-03898-z.
|
41. |
De Vroey H, Staes F, Weygers I, et al. The implementation of inertial sensors for the assessment of temporal parameters of gait in the knee arthroplasty population. Clin Biomech (Bristol), 2018, 54: 22-27.
|
42. |
Ramkumar PN, Haeberle HS, Ramanathan D, et al. Remote patient monitoring using mobile health for total knee arthroplasty: Validation of a wearable and machine learning-based surveillance platform. J Arthroplasty, 2019, 34(10): 2253-2259.
|
43. |
Daskivich TJ, Houman J, Lopez M, et al. Association of wearable activity monitors with assessment of daily ambulation and length of stay among patients undergoing major surgery. JAMA Netw Open, 2019, 2(2): e187673. doi: 10.1001/jamanetworkopen.2018.7673.
|
44. |
Pritwani S, Shrivastava P, Pandey S, et al. Mobile and computer-based applications for rehabilitation monitoring and self-management after knee arthroplasty: Scoping review. JMIR Mhealth Uhealth, 2024, 12: e47843. doi: 10.2196/47843.
|
45. |
Peng L, Zeng Y, Wu Y, et al. Virtual reality-based rehabilitation in patients following total knee arthroplasty: a systematic review and meta-analysis of randomized controlled trials. Chin Med J (Engl), 2021, 135(2): 153-163.
|
46. |
Tanaka MJ, Oh LS, Martin SD, et al. Telemedicine in the Era of COVID-19: The virtual orthopaedic examination. J Bone Joint Surg (Am), 2020, 102(12): e57. doi: 10.2106/JBJS.20.00609.
|
47. |
Dent PA, Wilke B, Terkonda S, et al. Validation of teleconference-based goniometry for measuring elbow joint range of motion. Cureus, 2020, 12(2): e6925. doi: 10.7759/cureus.6925.
|
48. |
Russo RR, Burn MB, Ismaily SK, et al. Is digital photography an accurate and precise method for measuring range of motion of the hip and knee? J Exp Orthop, 2017, 4(1): 29. doi: 10.1186/s40634-017-0103-7.
|
49. |
Gazendam A, Zhu M, Chang Y, et al. Virtual reality rehabilitation following total knee arthroplasty: a systematic review and meta-analysis of randomized controlled trials. Knee Surg Sports Traumatol Arthrosc, 2022, 30(8): 2548-2555.
|
50. |
Kuether J, Moore A, Kahan J, et al. Telerehabilitation for total hip and knee arthroplasty patients: A pilot series with high patient satisfaction. HSS J, 2019, 15(3): 221-225.
|
51. |
Prvu Bettger J, Green CL, Holmes DN, et al. Effects of virtual exercise rehabilitation in-home therapy compared with traditional care after total knee arthroplasty: VERITAS, a randomized controlled trial. J Bone Joint Surg (Am), 2020, 102(2): 101-109.
|
52. |
Spasić I, Button K, Divoli A, et al. TRAK App suite: A web-based intervention for delivering standard care for the rehabilitation of knee conditions. JMIR Res Protoc, 2015, 4(4): e122. doi: 10.2196/resprot.4091.
|
53. |
De Fazio R, Mastronardi VM, De Vittorio M, et al. Wearable sensors and smart devices to monitor rehabilitation parameters and sports performance: An overview. Sensors (Basel), 2023, 23(4): 1856. doi: 10.3390/s23041856.
|
54. |
Hurley ET, Haskel JD, Bloom DA, et al. The use and acceptance of telemedicine in orthopedic surgery during the COVID-19 pandemic. Telemed J E Health, 2021, 27(6): 657-662.
|
55. |
Mansukhani SA, Gopinath P, Chaturvedi A, et al. Remote follow-up of shoulder arthroplasty patients during COVID-19 pandemic—Is this the way forward? J Shoulder Elb Arthroplast, 2022, 6: 24715492221075460. doi: 10.1177/24715492221075460.
|
56. |
He C, Wu S, Zhao Y, et al. Social media-promoted weight loss among an occupational population: Cohort study using a WeChat mobile phone App-based campaign. J Med Internet Res, 2017, 19(10): e357. doi: 10.2196/jmir.7861.
|