1. |
臧建成, 秦泗河. 从Wolff定律和Ilizarov张力-应力法则到骨科自然重建理念. 中国骨伤, 2013, 26(4): 287-290.
|
2. |
曲龙. Ilizarov胫骨横向骨搬移技术的起源和发展. 中医正骨, 2019, 31(10): 4-6.
|
3. |
Zhu YL, Guo BF, Zang JC, et al. Ilizarov technology in China: a historic review of thirty-one years. Int Orthop, 2022, 46(3): 661-668.
|
4. |
Guan S, Du H, Wu Y, et al. The Ilizarov technique: A dynamic solution for orthopaedic challenges. Orthop Surg, 2024, 16(9): 2111-2114.
|
5. |
王天宝, 李晓飞, 张海宁, 等. 机械敏感性离子通道的研究进展. 齐鲁医学杂志, 2016, 31(3): 373-375.
|
6. |
张珂诚, 李聪, 陈知行. 力信号转导的基本元件: 机械力敏感离子通道的研究进展. 生命科学, 2021, 33(2): 205-222.
|
7. |
陈国辉, 李亚星, 张晖, 等. Piezo机械敏感性离子通道在骨关节系统中的作用. 中国修复重建外科杂志, 2024, 38(2): 240-248.
|
8. |
曹希萌, 沈荧怡, 胥春. 缺氧预处理间充质干细胞来源的外泌体在骨再生中作用的研究进展. 口腔医学, 2023, 43(9): 844-848.
|
9. |
Liu Y, Liu J, Cai F, et al. Hypoxia during the consolidation phase of distraction osteogenesis promotes bone regeneration. Front Physiol, 2022, 13: 804469. doi: 10.3389/fphys.2022.804469.
|
10. |
Liu K, Wang S, Yalikun A, et al. The accordion technique enhances bone regeneration via angiogenesis factor in a rat distraction osteogenesis model. Front Physiol, 2023, 14: 1259567.Liu K, Wang S, Yalikun A, et al. The accordion technique enhances bone regeneration via angiogenesis factor in a rat distraction osteogenesis model. Front Physiol, 2023, 14: 1259567. doi: 10.3389/fphys.2023.1259567.
|
11. |
Hu P, Zhu X, Zhao C, et al. Fak silencing impairs osteogenic differentiation of bone mesenchymal stem cells induced by uniaxial mechanical stretch. J Dent Sci, 2019, 14(3): 225-233.
|
12. |
王林, 王熙, 季楠, 等. 机械激活性离子通道压电蛋白Piezo1通过Notch信号通路介导牙周膜干细胞成骨分化作用机制研究. 华西口腔医学杂志, 2020, 38(6): 628-636.
|
13. |
Ru Y, Gu H, Sun L, et al. Mechanical stretch-induced ATP release from osteocytes promotes osteogenesis of bone marrow mesenchymal stem cells. Discov Med, 2024, 36(182): 494-508.
|
14. |
Wang H, Li T, Wang X, et al. The role of sphingosine-1-phosphate signaling pathway in cementocyte mechanotransduction. Biochem Biophys Res Commun, 2020, 523(3): 595-601.
|
15. |
Reilly GC, Haut TR, Yellowley CE, et al. Fluid flow induced PGE2 release by bone cells is reduced by glycocalyx degradation whereas calcium signals are not. Biorheology, 2003, 40(6): 591-603.
|
16. |
Li K, Liu L, Zhang J, et al. TP508 promotes bone regeneration on distraction osteogenesis via the activation of Wnt/β-catenin signaling pathway. Curr Pharm Biotechnol, 2025, 26(3): 402-410.
|
17. |
Li K, Liu L, Liu H, et al. LATS1/YAP1 axis controls bone regeneration on distraction osteogenesis by activating Wnt/β-catenin. Tissue Eng Part A, 2024, 30(3-4): 154-167.
|
18. |
Wang X, Luo E, Bi R, et al. Wnt/β-catenin signaling is required for distraction osteogenesis in rats. Connect Tissue Res, 2018, 59(1): 45-54.
|
19. |
Wu M, Chen G, Li YP. TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res, 2016, 4: 16009. doi: 10.1038/boneres.2016.9.
|
20. |
Wu M, Wu S, Chen W, et al. The roles and regulatory mechanisms of TGF-β and BMP signaling in bone and cartilage development, homeostasis and disease. Cell Res, 2024, 34(2): 101-123.
|
21. |
Xu J, Liu J, Gan Y, et al. High-dose TGF-β1 impairs mesenchymal stem cell-mediated bone regeneration via BMP2 inhibition. J Bone Miner Res, 2020, 35(1): 167-180.
|
22. |
Khanal A, Yoshioka I, Tominaga K, et al. The BMP signaling and its Smads in mandibular distraction osteogenesis. Oral Dis, 2008, 14(4): 347-355.
|
23. |
Zhang P, Dai Q, Ouyang N, et al. Mechanical strain promotes osteogenesis of BMSCs from ovariectomized rats via the ERK1/2 but not p38 or JNK-MAPK signaling pathways. Curr Mol Med, 2015, 15(8): 780-789.
|
24. |
Zhang P, Wu Y, Dai Q, et al. p38-MAPK signaling pathway is not involved in osteogenic differentiation during early response of mesenchymal stem cells to continuous mechanical strain. Mol Cell Biochem, 2013, 378(1-2): 19-28.
|
25. |
Chen J, Hua J, Song W. Screen key genes associated with distraction-induced osteogenesis of stem cells using bioinformatics methods. Int J Mol Sci, 2021, 22(12): 6505. doi: 10.3390/ijms22126505.
|
26. |
Wang F, Li S, Kong L, et al. Tensile stress-activated and exosome-transferred YAP/TAZ-notch circuit specifies type H endothelial cell for segmental bone regeneration. Adv Sci (Weinh), 2024, 11(12): e2309133. doi: 10.1002/advs.202309133.
|
27. |
Li S, Wu H, Wang F, et al. Enhanced bone regeneration through regulation of mechanoresponsive FAK-ERK1/2 signaling by ZINC40099027 during distraction osteogenesis. Int J Med Sci, 2024, 21(1): 137-150.
|
28. |
Watabe H, Furuhama T, Tani-Ishii N, et al. Mechanotransduction activates α₅β₁ integrin and PI3K/Akt signaling pathways in mandibular osteoblasts. Exp Cell Res, 2011, 317(18): 2642-2649.
|
29. |
Jiang W, Zhu P, Huang F, et al. The RNA methyltransferase METTL3 promotes endothelial progenitor cell angiogenesis in mandibular distraction osteogenesis via the PI3K/AKT pathway. Front Cell Dev Biol, 2021, 9: 720925. doi: 10.3389/fcell.2021.720925.
|
30. |
Wang D, Cai J, Zeng Z, et al. The interactions between mTOR and NF-κB: A novel mechanism mediating mechanical stretch-stimulated osteoblast differentiation. J Cell Physiol, 2020. doi: 10.1002/jcp.30184.
|
31. |
Ransom RC, Carter AC, Salhotra A, et al. Mechanoresponsive stem cells acquire neural crest fate in jaw regeneration. Nature, 2018, 563(7732): 514-521.
|
32. |
Motie P, Mohaghegh S, Kouhestani F, et al. Effect of mechanical forces on the behavior of osteoblasts: a systematic review of in vitro studies. Dent Med Probl, 2023, 60(4): 673-686.
|
33. |
Li Z, Zheng J, Wan D, et al. Uniaxial static strain promotes osteoblast proliferation and bone matrix formation in distraction osteogenesis in vitro. Biomed Res Int, 2020, 2020: 3906426. doi: 10.1155/2020/3906426.
|
34. |
Xiao LW, Yang M, Dong J, et al. Stretch-inducible expression of connective tissue growth factor (CTGF) in human osteoblasts-like cells is mediated by PI3K-JNK pathway. Cell Physiol Biochem, 2011, 28(2): 297-304.
|
35. |
Meyer U, Meyer T, Wiesmann HP, et al. Mechanical tension in distraction osteogenesis regulates chondrocytic differentiation. Int J Oral Maxillofac Surg, 2001, 30(6): 522-530.
|
36. |
曲延征, 陈伟辉, 蔡志宇, 等. 山羊下颌骨牵张成骨过程中血管生成与新骨形成关系的实验研究. 福建医药杂志, 2007, 29(5): 109-111.
|
37. |
Zhang L, Peng Y, Guo T, et al. Uniaxial static strain enhances osteogenic and angiogenic potential under hypoxic conditions in distraction osteogenesis. J Orthop Surg Res, 2024, 19(1): 711. doi: 10.1186/s13018-024-05212-x.
|
38. |
Li J, Wan Z, Liu H, et al. Osteoblasts subjected to mechanical strain inhibit osteoclastic differentiation and bone resorption in a co-culture system. Ann Biomed Eng, 2013, 41(10): 2056-2066.
|
39. |
Uchinuma M, Taketani Y, Kanaya R, et al. Role of Piezo1 in modulating the RANKL/OPG ratio in mouse osteoblast cells exposed to Porphyromonas gingivalis lipopolysaccharide and mechanical stress. J Periodontal Res, 2024, 59(4): 749-757.
|
40. |
Kitcharanant N, Chattipakorn N, Chattipakorn SC. The effect of intermittent parathyroid hormone on bone lengthening: current evidence to inform future effective interventions. Osteoporos Int, 2023, 34(10): 1657-1675.
|
41. |
Inada N, Ohata T, Maruno H, et al. Optimal timing for intermittent administration of parathyroid hormone (1-34) for distraction osteogenesis in rabbits. J Orthop Surg Res, 2022, 17(1): 130. doi: 10.1186/s13018-022-03019-2.
|
42. |
Yamashita J, McCauley LK. Effects of intermittent administration of parathyroid hormone and parathyroid hormone-related protein on fracture healing: A narrative review of animal and human studies. JBMR Plus, 2019, 3(12): e10250. doi: 10.1002/jbm4.10250.
|
43. |
Altay B, Dede EÇ, Özgul Ö, et al. Effect of systemic oxytocin administration on new bone formation and distraction rate in rabbit mandible. J Oral Maxillofac Surg, 2020, 78(7): 1171-1182.
|
44. |
Acikan I, Mehmet G, Artas G, et al. Systemic melatonin application increases bone formation in mandibular distraction osteogenesis. Braz Oral Res, 2018, 32: e85. doi: 10.1590/1807-3107bor-2018.vol32.0085.
|
45. |
Wang F, Kong L, Wang W, et al. Adrenomedullin 2 improves bone regeneration in type 1 diabetic rats by restoring imbalanced macrophage polarization and impaired osteogenesis. Stem Cell Res Ther, 2021, 12(1): 288. doi: 10.1186/s13287-021-02368-9.
|
46. |
Wang F, Qian H, Kong L, et al. Accelerated bone regeneration by astragaloside Ⅳ through stimulating the coupling of osteogenesis and angiogenesis. Int J Biol Sci, 2021, 17(7): 1821-1836.
|
47. |
Lin H, Wang X, Li Z, et al. Total flavonoids of Rhizoma drynariae promote angiogenesis and osteogenesis in bone defects. Phytother Res, 2022, 36(9): 3584-3600.
|
48. |
Li Y, Pan Q, Xu J, et al. Overview of methods for enhancing bone regeneration in distraction osteogenesis: Potential roles of biometals. J Orthop Translat, 2021, 27: 110-118.
|
49. |
Hamushan M, Cai W, Zhang Y, et al. High-purity magnesium pin enhances bone consolidation in distraction osteogenesis via regulating Ptch protein activating Hedgehog-alternative Wnt signaling. Bioact Mater, 2020, 6(6): 1563-1574.
|
50. |
Zhao G, Wang S, Wang G, et al. Enhancing bone formation using absorbable AZ31B magnesium alloy membranes during distraction osteogenesis: A new material study. Heliyon, 2023, 9(8): e18032. doi: 10.1016/j.heliyon.2023.e18032.
|
51. |
Lou T, Chen K, Luo Q, et al. Periosteum-inspired in situ CaP generated nanocomposite hydrogels with strong bone adhesion and superior stretchability for accelerated distraction osteogenesis. Biomater Res, 2022, 26(1): 91. doi: 10.1186/s40824-022-00330-1.
|
52. |
Liu X, Sun Y, Shen J, et al. Strontium doped mesoporous silica nanoparticles accelerate osteogenesis and angiogenesis in distraction osteogenesis by activation of Wnt pathway. Nanomedicine, 2022, 41: 102496. doi: 10.1016/j.nano.2021.102496.
|
53. |
Liu Y, Cai F, Liu K, et al. Cyclic distraction-compression dynamization technique enhances the bone formation during distraction osteogenesis. Front Bioeng Biotechnol, 2022, 9: 810723. doi: 10.3389/fbioe.2021.810723.
|
54. |
庄嘉宝, 胥春. 机械力刺激诱导机体组织炎症反应机制研究进展. 医用生物力学, 2017, 32(5): 476-480.
|
55. |
Liao F, Zhang T, Jiang W, et al. Characterization of the angiogenic and proteomic features of circulating exosomes in a canine mandibular model of distraction osteogenesis. J Proteome Res, 2024, 23(11): 4924-4939.
|
56. |
Jiang WD, Zhu PQ, Zhang T, et al. PRRX1+MSCs enhance mandibular regeneration during distraction osteogenesis. J Dent Res, 2023, 102(9): 1058-1068.
|