1. |
Hunter DJ, March L, Chew M. Osteoarthritis in 2020 and beyond: a Lancet Commission. Lancet, 2020, 396(10264): 1711-1712.
|
2. |
He M, Zhong X, Li Z, et al. Progress in the treatment of knee osteoarthritis with high tibial osteotomy: a systematic review. Syst Rev, 2021, 10(1): 56. doi: 10.1186/s13643-021-01601-z.
|
3. |
Du X, Liu ZY, Tao XX, et al. Research progress on the pathogenesis of knee osteoarthritis. Orthop Surg, 2023, 15(9): 2213-2224.
|
4. |
国家骨科医学中心保膝联盟. 胫骨高位截骨治疗膝关节退行性病变的适应证指南. 骨科临床与研究杂志, 2025, 10(1): 1-17.
|
5. |
Hou W, Xiao F, Peng P, et al. Osteotomy for treating knee osteoarthritis from 2012 to 2023: Bibliometric analysis and global trends. Medicine (Baltimore), 2024, 103(7): e37036. doi: 10.1097/MD.0000000000037036.
|
6. |
Liu GB, Liu S, Zhu CH, et al. A novel 3D-printed patient-specific instrument based on "H-point" for medial opening wedge high tibial osteotomy: a cadaver study. J Orthop Surg Res, 2022, 17(1): 169. doi: 10.1186/s13018-022-03057-w.
|
7. |
Kirilmaz A, Özkaya M, Erdem TE, et al. The effect of frontal plane osteotomy angle on lateral cortex fracture in medial open wedge high tibial osteotomy procedure. Knee, 2025, 52: 108-120.
|
8. |
许红生. 胫骨高位截骨术治疗膝关节内侧间室骨关节炎的研究进展. 临床骨科杂志, 2023, 26(2): 299-302.
|
9. |
Ma XL, Hu YC, Wang KZ, et al. Chinese clinical practice guidelines in treating knee osteoarthritis by periarticular knee osteotomy. Orthop Surg, 2022, 14(5): 789-806.
|
10. |
Pratobevera A, Seil R, Menetrey J. Joint line and knee osteotomy. EFORT Open Rev, 2024, 9(5): 375-386.
|
11. |
Oh BH, Seo KD, Yoo HJ, et al. Effects of high tibial osteotomy on the coronal, sagittal, and axial alignments of the ankle joint. J Orthop Surg (Hong Kong), 2024, 32(2): 10225536241273889. doi: 10.1177/10225536241273889.
|
12. |
Xie X, Zhu Y, Lobenhoffer P, et al. Intraoperative complications in medial opening wedge high tibial osteotomy. J Am Acad Orthop Surg, 2025, 33(3): 101-107.
|
13. |
Miltenberg B, Puzzitiello RN, Ruelos VCB, et al. Incidence of complications and revision surgery after high tibial osteotomy: A systematic review. Am J Sports Med, 2024, 52(1): 258-268.
|
14. |
Ahmed AM, Addosooki A, Saleh Sleem A, et al. Superior survivorship and plate-related results of TomoFix compared to Puddu plate fixation for opening-wedge high tibial osteotomy: A systematic review of the literature. Knee, 2023, 42: 1-18.
|
15. |
Diffo Kaze A, Maas S, Waldmann D, et al. Biomechanical properties of five different currently used implants for open-wedge high tibial osteotomy. J Exp Orthop, 2015, 2(1): 14. doi: 10.1186/s40634-015-0030-4.
|
16. |
Koh YG, Lee JA, Lee HY, et al. Design optimization of high tibial osteotomy plates using finite element analysis for improved biomechanical effect. J Orthop Surg Res, 2019, 14(1): 219. doi: 10.1186/s13018-019-1269-8.
|
17. |
Sidhu R, Moatshe G, Firth A, et al. Low rates of serious complications but high rates of hardware removal after high tibial osteotomy with Tomofix locking plate. Knee Surg Sports Traumatol Arthrosc, 2021, 29(10): 3361-3367.
|
18. |
Petersen W, Wall A, Paulin T, et al. Stability of two angular stable locking plates for open wedge high tibial osteotomy (HTO): TomoFix™ versus LOQTEQ® HTO plate. Arch Orthop Trauma Surg, 2014, 134(10): 1437-1442.
|
19. |
Park HU, Bäcker HC, Häner M, et al. Clinical outcome after medial open-wedge high tibial osteotomy: Comparison of two angular stable locking Plates-TomoFix™ versus LOQTEQ® HTO plate. J Pers Med, 2023, 13(3): 472. doi: 10.3390/jpm13030472.
|
20. |
van Egmond N, Janssen D, Hannink G, et al. Biomechanical comparison of two different locking plates for open wedge high tibial osteotomy. J Orthop Sci, 2018, 23(1): 105-111.
|
21. |
Raja Izaham RM, Abdul Kadir MR, Abdul Rashid AH, et al. Finite element analysis of Puddu and Tomofix plate fixation for open wedge high tibial osteotomy. Injury, 2012, 43(6): 898-902.
|
22. |
Watanabe K, Kamiya T, Suzuki D, et al. Biomechanical stability of open-wedge high tibial osteotomy: Comparison of two locking plates. Open Journal of Orthopedics, 2014, 4(10): 257-262.
|
23. |
Jang YW, Lim D, Seo H, et al. Role of an anatomically contoured plate and metal block for balanced stability between the implant and lateral hinge in open-wedge high-tibial osteotomy. Arch Orthop Trauma Surg, 2018, 138(7): 911-920.
|
24. |
Xu K, Yuan D, Wu Z, et al. Biomechanical and biocompatibility study of carbon fibre/kevlar high tibial osteotomy elastic composite plate. Arch Orthop Trauma Surg, 2025, 145(1): 234. doi: 10.1007/s00402-025-05857-1.
|
25. |
Zou Z, Wu Z, Yuan D, et al. Intraoperative radiographic analysis and adjustment of the optimal position of plate in high tibial osteotomy. Acta Radiologica (Stockholm, Sweden: 1987), 2024, 65(6): 609-615.
|
26. |
Hayatbakhsh Z, Farahmand F. Effects of plate contouring quality on the biomechanical performance of high tibial osteotomy fixation: A parametric finite element study. Proc Inst Mech Eng H, 2022, 236(3): 356-366.
|
27. |
Weng PW, Liaw CK, Chen CH, et al. Concentrated stress effects of contoured and non-contoured high Tibial osteotomy plates: A finite-element study. Clin Biomech (Bristol), 2020, 78: 105089. doi: 10.1016/j.clinbiomech.2020.105089.
|
28. |
Chen YN, Chang CW, Li CT, et al. Biomechanical investigation of the type and configuration of screws used in high tibial osteotomy with titanium locking plate and screw fixation. J Orthop Surg Res, 2019, 14(1): 35. doi: 10.1186/s13018-019-1062-8.
|
29. |
Bei T, Yang L, Huang Q, et al. Effectiveness of bone substitute materials in opening wedge high tibial osteotomy: a systematic review and meta-analysis. Ann Med, 2022, 54(1): 565-577.
|
30. |
Aryee S, Imhoff AB, Rose T, et al. Do we need synthetic osteotomy augmentation materials for opening-wedge high tibial osteotomy. Biomaterials, 2008, 29(26): 3497-3502.
|
31. |
Golovakhа ML, Orljanski W, Benedetto KP, et al. Comparison of theoretical fixation stability of three devices employed in medial opening wedge high tibial osteotomy: a finite element analysis. BMC Musculoskelet Disord, 2014, 15: 230. doi: 10.1186/1471-2474-15-230.
|
32. |
Lee JS, Park YJ, Wang L, et al. Modified Iliac crest reconstruction with bone cement for reduction of donor site pain and morbidity after open wedge high tibial osteotomy: A prospective study. Knee Surg Relat Res, 2016, 28(4): 277-282.
|
33. |
da Cunha Luciano R, de Moura Souza GD, Rispoli J, et al. Proximal tibial osteotomy: Stabilization of the medial opening with a tricortical iliac bone graft. Rev Bras Ortop, 2015, 45(6): 543-548.
|
34. |
Kesemenli CC, Demiroz S, Memisoglu K, et al. Use of tibial cortical autograft for the osteotomy site in medial opening-wedge high tibial osteotomy. Orthop J Sports Med, 2024, 12(3): 23259671241233321. doi: 10.1177/23259671241233321.
|
35. |
Gong Y, Jin L, Wang Y, et al. A new technique of autologous bone grafting for open-wedge high tibial osteotomy. Front Surg, 2024, 11: 1337668. doi: 10.3389/fsurg.2024.1337668.
|
36. |
Yazdi HR, Karimi Haris H, Rohani S, et al. The results of allogenic cancellous bone graft in medial opening wedge high tibial osteotomy. Eur J Orthop Surg Traumatol, 2023, 33(3): 623-627.
|
37. |
Haghpanah B, Kaseb MH, Espandar R, et al. No difference in union and recurrence rate between iliac crest autograft versus allograft following medial opening wedge high tibial osteotomy: a randomized controlled trial. Knee Surg Sports Traumatol Arthrosc, 2021, 29(10): 3375-3381.
|
38. |
Chen J, Li J, Zhang H, et al. Bone healing and clinical outcome following medial opening-wedge high tibial osteotomy using wedge-shaped cancellous allograft. Orthop Surg, 2024, 16(1): 86-93.
|
39. |
Takeuchi R, Bito H, Akamatsu Y, et al. In vitro stability of open wedge high tibial osteotomy with synthetic bone graft. Knee, 2010, 17(3): 217-220.
|
40. |
Belsey J, Diffo Kaze A, Jobson S, et al. Graft materials provide greater static strength to medial opening wedge high tibial osteotomy than when no graft is included. J Exp Orthop, 2019, 6(1): 13. doi: 10.1186/s40634-019-0184-6.
|
41. |
Yamaguchi J, Kondo E, Yasuda K, et al. Improvement of absorbability, osteoconductivity, and strength of a β-tricalcium phosphate spacer for opening wedge high tibial osteotomy: clinical evaluations with 106 patients. BMC Musculoskelet Disord, 2024, 25(1): 441. doi: 10.1186/s12891-024-07533-8.
|
42. |
Yang JC, Lin KY, Lin HH, et al. Biomechanical evaluation of high tibial osteotomy plate with internal support block using finite element analysis. PLoS One, 2021, 16(2): e0247412. doi: 10.1371/journal.pone.0247412.
|
43. |
张静, 张嘉宁, 郭磊, 等. 开放式胫骨高位截骨术中三维打印填充块设计的生物力学研究. 生物医学工程学杂志, 2024, 41(4): 758-765.
|
44. |
Chua SKK, Wong WS, Koh DTS, et al. Faster bone gap union in medial opening wedge high tibial osteotomy with 3D-printed synthetic bioresorbable polycaprolactone and tricalcium phosphate osteotomy gap fillers compared to allogeneic osteotomy gap fillers: A retrospective matched-pair cohort study. Cartilage, 2025, 16(1): 24-35.
|
45. |
Chen KH, Wong PC, Rethi L, et al. Bioabsorbable magnesium-based bulk metallic glass composite (BMGC) for improved medial opening wedge high tibial osteotomy in knee osteoarthritis. J Orthop Translat, 2025, 50: 97-110.
|
46. |
Khalifa AA, Fadle AA, Alzohiry MA, et al. Biplanar fixation by (extra-focal) screw in medial wedge opening high tibial osteotomy (MWOHTO). Orthopedics and Rheumatology Open Access Journals, 2020, 15(4): 116-123.
|
47. |
Chieh-Szu Yang J, Chen CF, Lee OK. Benefits of opposite screw insertion technique in medial open-wedge high tibial osteotomy: A virtual biomechanical study. J Orthop Translat, 2019, 20: 31-36.
|
48. |
Yang JC, Lobenhoffer P, Chang CM, et al. A supplemental screw enhances the biomechanical stability in medial open-wedge high tibial osteotomy. PLoS One, 2020, 15(12): e0244557. doi: 10.1371/journal.pone.0244557.
|
49. |
Paccola CA, Fogagnolo F. Open-wedge high tibial osteotomy: a technical trick to avoid loss of reduction of the opposite cortex. Knee Surg Sports Traumatol Arthrosc, 2005, 13(1): 19-22.
|
50. |
Zhao XW, Fan ZR, Ma JX, et al. Reinforcement strategy for medial open-wedge high tibial osteotomy: a finite element evaluation of the additional opposite screw technique and bone grafts. Comput Methods Programs Biomed, 2022, 213: 106523. doi: 10.1016/j.cmpb.2021.106523.
|
51. |
Ma HH, Lobenhoffer P, Yang JC. The benefits of a percutaneous supplemental screw to reinforce the hinge of a medial open wedge tibial osteotomy. Arch Orthop Trauma Surg, 2023, 143(7): 3707-3713.
|
52. |
Burchard R, Katerla D, Hammer M, et al. Intramedullary nailing in opening wedge high tibial osteotomy-in vitro test for validation of a method of fixation. Int Orthop, 2018, 42(8): 1835-1843.
|
53. |
Jonker L, Fallahi F, Saraswathy JJ, et al. OPTY-LINE remote-controlled adjustable intramedullary device implantation in open-wedge high tibial osteotomy: A prospective proof-of-concept pilot and comparison with Tomofix fixed-plate device method. J Orthop Surg (Hong Kong), 2019, 27(3): 2309499019864721. doi: 10.1177/2309499019864721.
|
54. |
Jonker L, Bell L, Monda M, et al. Longer term outcomes following high tibial osteotomy for osteoarthritis: A prospective, multi-centre observational study comparing tomofix and OPTY-line devices. Indian J Orthop, 2021, 55(4): 967-973.
|
55. |
杨梦其, 王慧, 李杰, 等. Taylor空间外固定架联合胫骨高位截骨术对膝骨性关节炎并膝内翻患者膝关节功能的影响. 临床和实验医学杂志, 2021, 20(6): 639-642.
|
56. |
Chaudhary MM. Role of the Ilizarov fixator in high tibial osteotomy. J Clin Orthop Trauma, 2021, 25: 101724. doi: 10.1016/j.jcot.2021.101724.
|
57. |
Baumgartner H, Finger F, Ahrend MD, et al. Salvage algorithm for deep surgical site infections after HTO with unstable bone situation using a hexapod system-primary results. Z Orthop Unfall, 2024, 162(6): 623-629.
|
58. |
Duan D, Cao Y, Li R, et al. Opening wedge high tibial osteotomy with combined use of patient-specific 3D-printed plates and taylor spatial frame for the treatment of knee osteoarthritis. Pain Res Manag, 2021, 2021: 8609921. doi: 10.1155/2021/8609921.
|
59. |
王国华, 刘大凯, 杨茂伟, 等. Taylor外固定架与钢板内固定在老年膝内翻骨关节炎患者行胫骨高位截骨术中的应用比较. 老年医学与保健, 2021, 27(6): 1252-1255,1278.
|