1. |
Titan AL, Foster DS, Chang J, et al. Flexor tendon: Development, healing, adhesion formation, and contributing growth factors. Plast Reconstr Surg, 2019, 144(4): 639e-647e.
|
2. |
de Jong JP, Nguyen JT, Sonnema AJ, et al. The incidence of acute traumatic tendon injuries in the hand and wrist: a 10-year population-based study. Clin Orthop Surg, 2014, 6(2): 196-202.
|
3. |
Zhu Y, Zhang C, Liang Y, et al. Advanced postoperative tissue antiadhesive membranes enabled with electrospun nanofibers. Biomater Sci, 2024, 12(7): 1643-1661.
|
4. |
Collen D, Lijnen HR. Molecular basis of fibrinolysis, as relevant for thrombolytic therapy. Thromb Haemost, 1995, 74(1): 167-171.
|
5. |
Voleti PB, Buckley MR, Soslowsky LJ. Tendon healing: repair and regeneration. Annu Rev Biomed Eng, 2012, 14: 47-71.
|
6. |
Walden G, Liao X, Donell S, et al. A Clinical, biological, and biomaterials perspective into tendon injuries and regeneration. Tissue Eng Part B Rev, 2017, 23(1): 44-58.
|
7. |
Bhavsar D, Shettko D, Tenenhaus M. Encircling the tendon repair site with collagen-GAG reduces the formation of postoperative tendon adhesions in a chicken flexor tendon model. J Surg Res, 2010, 159(2): 765-771.
|
8. |
Postlethwaite AE, Keski-Oja J, Moses HL, et al. Stimulation of the chemotactic migration of human fibroblasts by transforming growth factor beta. J Exp Med, 1987, 165(1): 251-256.
|
9. |
Wahl SM, Hunt DA, Wakefield LM, et al. Transforming growth factor type beta induces monocyte chemotaxis and growth factor production. Proc Natl Acad Sci U S A, 1987, 84(16): 5788-5792.
|
10. |
Chisari E, Rehak L, Khan WS, et al. The role of the immune system in tendon healing: a systematic review. Br Med Bull, 2020, 133(1): 49-64.
|
11. |
Wei Y, Yun X, Guan Y, et al. Wnt3a-modified nanofiber scaffolds facilitate tendon healing by driving macrophage polarization during repair. ACS Appl Mater Interfaces, 2023. doi: 10.1021/acsami.2c20386.
|
12. |
Wang S, Xiao Y, Tian J, et al. Targeted macrophage CRISPR-Cas13 mRNA editing in immunotherapy for tendon injury. Adv Mater, 2024, 36(19): e2311964. doi: 10.1002/adma.202311964.
|
13. |
Liao J, Li X, Fan Y. Prevention strategies of postoperative adhesion in soft tissues by applying biomaterials: Based on the mechanisms of occurrence and development of adhesions. Bioact Mater, 2023, 26: 387-412.
|
14. |
Ao YJ, Yi Y, Wu GH. Application of PLLA (poly-L-lactic acid) for rejuvenation and reproduction of facial cutaneous tissue in aesthetics: A review. Medicine (Baltimore), 2024, 103(11): e37506. doi: 10.1097/MD.0000000000037506.
|
15. |
Yang Y, Yao Z, Sun Y, et al. 3D-printed manganese dioxide incorporated scaffold promotes osteogenic-angiogenic coupling for refractory bone defect by remodeling osteo-regenerative microenvironment. Bioact Mater, 2024, 44: 354-370.
|
16. |
Ju J, Peng X, Huang K, et al. High-performance porous PLLA-based scaffolds for bone tissue engineering: Preparation, characterization, and in vitro and in vivo evaluation. Polymer, 2019, 180: 121707. doi: 10.1016/j.polymer.2019.121707.
|
17. |
Zhu Y, Liang H, Liu X, et al. Regulation of macrophage polarization through surface topography design to facilitate implant-to-bone osteointegration. Sci Adv, 2021, 7(14): eabf6654. doi: 10.1126/sciadv.abf6654.
|
18. |
Xie X, Xu J, Ding D, et al. Janus membranes patch achieves high-quality tendon repair: Inhibiting exogenous healing and promoting endogenous healing. Nano Lett, 2024, 24(14): 4300-4309.
|
19. |
Liu R, He T, Li R, et al. Comparison of different types of poly-L-lactic acid microspheres in vitro and in vivo studies. Aesthet Surg J Open Forum, 2024, 6: ojae091. doi: 10.1093/asjof/ojae091.
|
20. |
Qu X, Sang X, Lv Y, et al. PLLA-COI multilayer nanofiber membrane for anti-adhesion of the Achilles tendon. Materials Today Communications, 2024, 38: 107595. doi: 10.1016/j.mtcomm.2023.107595.
|
21. |
中国科学院大学深圳医院 (光明). 一种复合肌腱防粘连膜及制备方法: 202010574129.9[P]. 2020-09-29.
|
22. |
Mao Y, Guidoin R, Brochu G, et al. Facile fabrication of phospholipid-functionalized nanofiber-based barriers with enhanced anti-adhesion efficiency. Colloids Surf B Biointerfaces, 2021, 203: 111728. doi: 10.1016/j.colsurfb.2021.111728.
|
23. |
Srihanam P, Thongsomboon W, Baimark Y. Phase morphology, mechanical, and thermal properties of calcium carbonate-reinforced poly (L-lactide)-b-poly (ethylene glycol)-b-poly (L-lactide) bioplastics. Polymers (Basel), 2023, 15(2): 301. doi: 10.3390/polym15020301.
|
24. |
Shuai C, Yang F, Shuai Y, et al. Silicon dioxide nanoparticles decorated on graphene oxide nanosheets and their application in poly (L-lactic acid) scaffold. J Adv Res, 2023, 48: 175-190.
|
25. |
Khodabandeh A, Yousefi AA, Jafarzadeh-Holagh S, et al. Fabrication of 3D microfibrous composite polycaprolactone/hydroxyapatite scaffolds loaded with piezoelectric poly (lactic acid) nanofibers by sequential near-field and conventional electrospinning for bone tissue engineering. Biomater Adv, 2025, 166: 214053. doi: 10.1016/j.bioadv.2024.214053.
|
26. |
Tao Y, Jiao G, Zhao X, et al. Amino acid-crosslinked 4arm-PLGA Janus patch with anti-adhesive and anti-bacterial properties for hernia repair. Colloids Surf B Biointerfaces, 2024, 243: 114126. doi: 10.1016/j.colsurfb.2024.114126.
|
27. |
Liu J, Li T, Zhang H, et al. Electrospun strong, bioactive, and bioabsorbable silk fibroin/poly (L-lactic-acid) nanoyarns for constructing advanced nanotextile tissue scaffolds. Mater Today Bio, 2022, 14: 100243. doi: 10.1016/j.mtbio.2022.100243.
|
28. |
北京化工大学. 一种成分梯度化肌腱防粘连纤维膜及其制备方法: 202110264223.9[P]. 2021-06-25.
|
29. |
Xuan H, Zhang Z, Jiang W, et al. Dual-bioactive molecules loaded aligned core-shell microfibers for tendon tissue engineering. Colloids Surf B Biointerfaces, 2023, 228: 113416. doi: 10.1016/j.colsurfb.2023.113416.
|
30. |
Lin X, Qi SL, Hai BW, et al. Electrospun multi-functional medicated tri-section Janus nanofibers for an improved anti-adhesion tendon repair. Chemical Engineering Journal, 2024, 492: 152359. doi: 10.1016/j.cej.2024.152359.
|
31. |
Zhang Q, Yang Y, Suo D, et al. A biomimetic adhesive and robust janus patch with anti-oxidative, anti-inflammatory, and anti-bacterial activities for tendon repair. ACS Nano, 2023, 17(17): 16798-16816.
|
32. |
Capuana E, Lopresti F, Ceraulo M, et al. Poly-L-lactic acid (PLLA)-based biomaterials for regenerative medicine: A review on processing and applications. Polymers (Basel), 2022, 14(6): 1153. doi: 10.3390/polym14061153.
|
33. |
He T, Zhang Z, Zhang X, et al. Effects of poly-L-lactic acid fillers on inflammatory response and collagen synthesis in different animal models. J Cosmet Dermatol, 2025, 24(2): e70000. doi: 10.1111/jocd.70000. v. doi: 10.1111/jocd.70000.v.
|
34. |
Zhou X, Kong R, Deng F, et al. Self- delivery photothermal converter for feedback enhanced tumor therapy by cascade inflammation inhibition. Chem Eng J, 2023, 453(2): 139887. doi: 10.1016/j.cej.2022.139887.
|
35. |
Liu J, Tang R, Zhu X, et al. Ibuprofen-loaded bilayer electrospun mesh modulates host response toward promoting full-thickness abdominal wall defect repair. J Biomed Mater Res A, 2024, 112(6): 941-955.
|
36. |
刘珅. 一种三层复合结构肌腱术后仿生腱鞘防粘连膜: CN 115554479 A [P]. 2023-01-03.
|
37. |
Deng J, Yao Z, Wang S, et al. Uni-directional release of ibuprofen from an asymmetric fibrous membrane enables effective peritendinous anti-adhesion. J Control Release, 2024, 372: 251-264.
|
38. |
Zeng X, Li Y, Zhao G, et al. Dipyridamole-grafted copolymer electrospun nanofiber membranes for suppression of peritendinous adhesions. Acta Biomater, 2024, 188: 197-211.
|
39. |
Li Y, Hu C, Hu B, et al. Sustained release of dicumarol via novel grafted polymer in electrospun nanofiber membrane for treatment of peritendinous adhesion. Adv Healthc Mater, 2023, 12(15): e2203078. doi: 10.1002/adhm.202203078.
|
40. |
Xiao Y, Tao Z, Ju Y, et al. Diamond-like carbon depositing on the surface of polylactide membrane for prevention of adhesion formation during tendon repair. Nanomicro Lett, 2024, 16(1): 186. doi: 10.1007/s40820-024-01392-7.
|