| 1. |
Zhang H, Fan Y, Wang R, et al. Research trends and hotspots of high tibial osteotomy in two decades (from 2001 to 2020): a bibliometric analysis. J Orthop Surg Res, 2020, 15(1): 512. doi: 10.1186/s13018-020-01991-1.
|
| 2. |
Herman BV, Giffin JR. High tibial osteotomy in the ACL-deficient knee with medial compartment osteoarthritis. J Orthop Traumatol, 2016, 17(3): 277-285.
|
| 3. |
Kayaalp ME, Apseloff NA, Lott A, et al. Around-the-knee osteotomies part 1: definitions, rationale and planning-state of the art. J ISAKOS, 2024, 9(4): 645-657.
|
| 4. |
Liang H, Zhang H, Chen B, et al. 3D printing technology combined with personalized plates for complex distal intra-articular fractures of the trimalleolar ankle. Sci Rep, 2023, 13(1): 22667. doi: 10.1038/s41598-023-49515-1.
|
| 5. |
Alemayehu DG, Zhang Z, Tahir E, et al. Preoperative planning using 3D printing technology in orthopedic surgery. Biomed Res Int, 2021, 2021: 7940242. doi: 10.1155/2021/7940242.
|
| 6. |
Meng M, Wang J, Huang H, et al. 3D printing metal implants in orthopedic surgery: Methods, applications and future prospects. J Orthop Translat, 2023, 42: 94-112.
|
| 7. |
Park HJ, Suh DH, Hong H, et al. Biomechanical evaluation of a newly designed locking plate for opening wedge high tibial osteotomy: stress distribution and stability in the presence of lateral hinge fracture. J Orthop Surg Res, 2024, 19(1): 800. doi: 10.1186/s13018-024-05283-w.
|
| 8. |
Xu Z, Xu W, Zhang T, et al. Mechanisms of tendon-bone interface healing: biomechanics, cell mechanics, and tissue engineering approaches. J Orthop Surg Res, 2024, 19(1): 817. doi: 10.1186/s13018-024-05304-8.
|
| 9. |
Omid R, Trasolini NA, Stone MA, et al. Principles of locking plate fixation of proximal humerus fractures. J Am Acad Orthop Surg, 2021, 29(11): e523-e535.
|
| 10. |
Yao Y, Yuan H, Huang H, et al. Biomechanical design and analysis of auxetic pedicle screw to resist loosening. Comput Biol Med. 2021, 133: 104386. doi: 10.1016/j.compbiomed.2021.104386.
|
| 11. |
Schader J F, Mischler D, Dauwe J, et al. One size may not fit all: patient-specific computational optimization of locking plates for improved proximal humerus fracture fixation. J Shoulder Elbow Surg. 2022, 31(1): 192-200.
|
| 12. |
Hughes JM, Castellani CM, Popp KL, et al. The central role of osteocytes in the four adaptive pathways of bone's mechanostat. Exerc Sport Sci Rev, 2020, 48(3): 140-148.
|
| 13. |
Augat P, Hollensteiner M, von Rüden C. The role of mechanical stimulation in the enhancement of bone healing. Injury, 2021, 52 Suppl 2: S78-S83.
|
| 14. |
Szabo E, Rimnac C. Biomechanics of immature human cortical bone: a systematic review. J Mech Behav Biomed Mater, 2022, 125: 104889. doi: 10.1016/j.jmbbm.2021.104889.
|
| 15. |
Orrego S, Chen Z, Krekora U, et al. Bioinspired materials with self-adaptable mechanical properties. Adv Mater. 2020, 32(21): e1906970. doi: 10.1002/adma.201906970.
|
| 16. |
Yao Y, Mo Z, Wu G, et al. A personalized 3D-printed plate for tibiotalocalcaneal arthrodesis: Design, fabrication, biomechanical evaluation and postoperative assessment. Comput Biol Med, 2021 Jun: 133: 104368. doi: 10.1016/j.compbiomed.2021.104368.
|
| 17. |
Hinz N, Dehoust J, Munch M, et al. Biomechanical analysis of fixation methods in acetabular fractures: a systematic review of test setups. Eur J Trauma Emerg Surg, 2022, 48(5): 3541-3560.
|
| 18. |
Liverani E, Rogati G, Pagani S, et al. Mechanical interaction between additive-manufactured metal lattice structures and bone in compression: implications for stress shielding of orthopaedic implants. J Mech Behav Biomed Mater, 2021, 121: 104608. doi: 10.1016/j.jmbbm.2021.104608.
|
| 19. |
Lin C, Kang J. Mechanical properties of compact bone defined by the stress-strain curve measured using uniaxial tensile test: a concise review and practical guide. Materials (Basel), 2021, 14(15): 4224. doi: 10.3390/ma14154224.
|
| 20. |
Cronier P, Pietu G, Dujardin C, et al. The concept of locking plates. Orthop Traumatol Surg Res, 2010. doi: 10.1016/j.otsr.2010.03.008.
|
| 21. |
Hasami NA, Smeeing DPJ, Pull Ter Gunne AF, et al. Operative fixation of lateral malleolus fractures with locking plates vs nonlocking plates: a systematic review and meta-analysis. Foot Ankle Int, 2022, 43(2): 280-290.
|
| 22. |
Zdero R, Brzozowski P, Schemitsch EH. Biomechanical design optimization of proximal humerus locked plates: A review. Injury, 2024, 55(2): 111247. doi: 10.1016/j.injury.2023.111247.
|
| 23. |
Rosell-Pradas J, Redondo-Trasobares B, Sarasa-Roca M, et al. Influence of plate size and screw distribution on the biomechanical behaviour of osteosynthesis by means of lateral plates in femoral fractures. Injury, 2023, 54(2): 395-404.
|
| 24. |
van Haeringen MH, Kuijer PPFM, Daams JG, et al. Opening- and closing-wedge high tibial osteotomy are comparable and early full weight bearing is safe with angular stable plate fixation: a meta-analysis. Knee Surg Sports Traumatol Arthrosc, 2023, 31(7): 3015-3026.
|
| 25. |
Balaji G, Arokiaraj J, Nithyananth M, et al. Complex post traumatic foot deformities - Outcomes after corrective surgery. J Clin Orthop Trauma, 2020, 11(3): 432-437.
|
| 26. |
Liu J, Zhang Z, Li P, et al. Enhancing fixation stability in proximal humerus fractures: screw orientation optimization in PHILOS plates through finite element analysis and biomechanical testing. Sci Rep, 2024, 14(1): 27064. doi: 10.1038/s41598-024-78702-x.
|
| 27. |
Cheng X, Liu F, Xiong F, et al. Radiographic changes and clinical outcomes after open and closed wedge high tibial osteotomy: a systematic review and meta-analysis. J Orthop Surg Res. 2019, 14(1): 179. doi: 10.1186/s13018-019-1222-x.
|
| 28. |
Cerciello S, Ollivier M, Corona K, et al. CAS and PSI increase coronal alignment accuracy and reduce outliers when compared to traditional technique of medial open wedge high tibial osteotomy: a meta-analysis. Knee Surg Sports Traumatol Arthrosc, 2022, 30(2): 555-566.
|
| 29. |
Choi N. Editorial Commentary: Knee preoperative medial laxity may result in overcorrection or varus recurrence after open-wedge high tibial osteotomy. Arthroscopy, 2022, 38(5): 1555-1556.
|
| 30. |
Liu X, Chen Z, Gao Y, et al. High tibial osteotomy: review of techniques and biomechanics. J Healthc Eng. 2019, 2019: 8363128. doi: 10.1155/2019/8363128.
|
| 31. |
Giuseffi SA, Replogle WH, Shelton WR. Opening-wedge high tibial osteotomy: review of 100 consecutive cases. Arthroscopy, 2015, 31(11): 2128-2137.
|
| 32. |
Han SB, In Y, Oh KJ, et al. Complications associated with medial opening-wedge high tibial osteotomy using a locking plate: a multicenter study. J Arthroplasty, 2019, 34(3): 439-445.
|
| 33. |
Yoo OS, Lee YS, Lee MC, et al. Morphologic analysis of the proximal tibia after open wedge high tibial osteotomy for proper plate fitting. BMC Musculoskelet Disord, 2016, 17(1): 423. doi: 10.1186/s12891-016-1277-3.
|
| 34. |
Lott A, James MG, Kaarre J, et al. Around-the-knee osteotomies part II: Surgical indications, techniques and outcomes—State of the art. J ISAKOS, 2024, 9(4): 658-671.
|
| 35. |
Coakley A, Mcnicholas M, Biant L, et al. A systematic review of outcomes of high tibial osteotomy for the valgus knee. Knee, 2023, 40: 97-110.
|
| 36. |
Cance N, Batailler C, Lording T, et al. Ten-year minimal follow-up of lateral opening wedge distal femoral osteotomy for lateral femorotibial osteoarthritis: Good survivorship and high patient satisfaction. Knee Surg Sports Traumatol Arthrosc, 2025, 33(2): 675-685.
|
| 37. |
Nguyen DCT, Benameur S, Mignotte M, et al. 3D biplanar reconstruction of lower limbs using nonlinear statistical models. Med Biol Eng Comput, 2023, 61(11): 2877-2894.
|
| 38. |
Fujita K, Sawaguchi T, Goshima K, et al. Influence of lateral hinge fractures on biplanar medial closing-wedge distal femoral osteotomy for valgus knee: a new classification of lateral hinge fracture. Arch Orthop Trauma Surg, 2023, 143(3): 1175-1183.
|
| 39. |
Ehlinger M, Favreau H, Murgier J, et al. Knee osteotomies: The time has come for 3D planning and patient-specific instrumentation. Orthop Traumatol Surg Res, 2023, 109(4): 103611. doi: 10.1016/j.otsr.2023.103611.
|
| 40. |
Koh YG, Lee JA, Lee HY, et al. Design optimization of high tibial osteotomy plates using finite element analysis for improved biomechanical effect. J Orthop Surg Res, 2019, 14(1): 219. doi: 10.1186/s13018-019-1269-8.
|
| 41. |
Lansdaal JR, Mouton T, Wascher DC, et al. Early weight bearing versus delayed weight bearing in medial opening wedge high tibial osteotomy: a randomized controlled trial. Knee Surg Sports Traumatol Arthrosc, 2017, 25(12): 3670-3678.
|
| 42. |
Depaoli A, Menozzi GC, Di Gennaro GL, et al. The flipping-wedge osteotomy: how 3D virtual surgical planning (VSP) suggested a simple and promising type of osteotomy in pediatric post-traumatic forearm deformity. J Pers Med, 2023, 13(3): 549. doi: 10.3390/jpm13030549.
|
| 43. |
Pisciotta C, Saveri P, Pareyson D. Challenges in treating Charcot-Marie-Tooth Disease and related neuropathies: current management and future perspectives. Brain Sci, 2021, 11(11): 1447. doi: 10.3390/brainsci11111447.
|
| 44. |
Daniel AV, Wagner MJ, Levy BA. Editorial Commentary: Various high tibial osteotomy techniques show high survivorship, medial opening-wedge technique has risks, and patient-specific instrumentation shows promise. Arthroscopy, 2025, 41(10): 4165-4167.
|
| 45. |
Kedadria A, Benaouali A, Gilson L, et al. Numerical design and analysis of customized fixation plate for treating middle one-third clavicle fracture. Comput Methods Biomech Biomed Engin, 2025, 11: 1-11.
|
| 46. |
Palmer J, Getgood A, Lobenhoffer P, et al. Medial opening wedge high tibial osteotomy for the treatment of medial unicompartmental knee osteoarthritis: A state-of-the-art review. J ISAKOS, 2024, 9(1): 39-52.
|
| 47. |
IJpma FFA, Meesters AML, Merema BBJ, et al. Feasibility of imaging-based 3-dimensional models to design patient-specific osteosynthesis plates and drilling guides. JAMA Netw Open, 2021, 4(2): e2037519. doi: 10.1001/jamanetworkopen.2020.37519.
|
| 48. |
Chen H, Liu Y, Wang C, et al. Design and properties of biomimetic irregular scaffolds for bone tissue engineering. Comput Biol Med, 2021, 130: 104241. doi: 10.1016/j.compbiomed.2021.104241.
|
| 49. |
Katsuura Y, Qureshi SA. Additive manufacturing for metal applications in orthopaedic surgery. J Am Acad Orthop Surg, 2020, 28(8): e349-e355.
|
| 50. |
Li J, Cui X, Hooper GJ, et al. Rational design, bio-functionalization and biological performance of hybrid additive manufactured titanium implants for orthopaedic applications: A review. J Mech Behav Biomed Mater, 2020, 105: 103671. doi: 10.1016/j.jmbbm.2020.103671.
|
| 51. |
Ranaldo D, Zonta F, Florian S, et al. A facile, semi-automatic protocol for the design and production of 3D printed, anatomical customized orthopedic casts for forearm fractures. J Clin Orthop Trauma, 2023, 42: 102206. doi: 10.1016/j.jcot.2023.102206.
|
| 52. |
Desai KB, Mulpur P, Jayakumar T, et al. Adoption of robotics in arthroplasty-a survey of perceptions, utilization and challenges with technology amongst Indian surgeons. J Orthop, 2023, 46: 51-57.
|
| 53. |
Liu Y, Du T, Qiao A, et al. Zinc-based biodegradable materials for orthopaedic internal fixation. J Funct Biomater, 2022, 13(4): 164. doi: 10.3390/jfb13040164.
|
| 54. |
Suljevic O, Fischerauer SF, Weinberg AM, et al. Immunological reaction to magnesium-based implants for orthopedic applications. What do we know so far? A systematic review on in vivo studies. Mater Today Bio, 2022, 15: 100315. doi: 10.1016/j.mtbio.2022.100315.
|