| 1. |
Bedi A, Musahl V, Cowan JB. Management of posterior cruciate ligament injuries: an evidence-based review. J Am Acad Orthop Surg, 2016, 24(5): 277-289.
|
| 2. |
Longo UG, Viganò M, Candela V, et al. Epidemiology of posterior cruciate ligament reconstructions in Italy: A 15-year study. J Clin Med, 2021, 10(3): 499. doi: 10.3390/jcm10030499.
|
| 3. |
Chahla J, Moatshe G, Cinque ME, et al. Single-bundle and double-bundle posterior cruciate ligament reconstructions: a systematic review and meta-analysis of 441 patients at a minimum 2 years' follow-up. Arthroscopy, 2017, 33(11): 2066-2080.
|
| 4. |
Rousseau R, Makridis KG, Pasquier G, et al. Recurrent posterior knee laxity: diagnosis, technical aspects and treatment algorithm. Knee Surg Sports Traumatol Arthrosc, 2017, 25(10): 3046-3052.
|
| 5. |
Arøen A, Sivertsen EA, Owesen C, et al. An isolated rupture of the posterior cruciate ligament results in reduced preoperative knee function in comparison with an anterior cruciate ligament injury. Knee Surg Sports Traumatol Arthrosc, 2013, 21(5): 1017-1022.
|
| 6. |
Orakzai SH, Egan CM, Eustace S, et al. Correlation of intra-articular osseous measurements with posterior cruciate ligament length on MRI scans. Br J Radiol, 2010, 83(985): 23-27.
|
| 7. |
Boutefnouchet T, Bentayeb M, Qadri Q, et al. Long-term outcomes following single-bundle transtibial arthroscopic posterior cruciate ligament reconstruction. Int Orthop, 2013, 37(2): 337-343.
|
| 8. |
Migliorini F, Pintore A, Oliva F, et al. Allografts as alternative to autografts in primary posterior cruciate ligament reconstruction: a systematic review and meta-analysis. Knee Surg Sports Traumatol Arthrosc, 2023, 31(7): 2852-2860.
|
| 9. |
Winkler PW, Wagala NN, Carrozzi S, et al. Low posterior tibial slope is associated with increased risk of PCL graft failure. Knee Surg Sports Traumatol Arthrosc, 2022, 30(10): 3277-3286.
|
| 10. |
Winkler PW, Zsidai B, Narup E, et al. Sports activity and quality of life improve after isolated ACL, isolated PCL, and combined ACL/PCL reconstruction. Knee Surg Sports Traumatol Arthrosc, 2023, 31(5): 1781-1789.
|
| 11. |
Jia G, Guo L, Peng B, et al. The optimal tibial tunnel placement to maximize the graft bending angle in the transtibial posterior cruciate ligament reconstruction: a quantitative assessment in three-dimensional computed tomography model. Quant Imaging Med Surg, 2023, 13(8): 5195-5206.
|
| 12. |
Peng B, Tang Y, Jia G, et al. Biomechanical comparison of anatomic versus lower of anteromedial and anterolateral tibial tunnels in posterior cruciate ligament reconstruction. Orthop Surg, 2023, 15(3): 851-857.
|
| 13. |
Yoon KH, Kim JS, Park JY, et al. Comparable clinical and radiologic outcomes between an anatomic tunnel and a low tibial tunnel in remnant-preserving posterior cruciate ligament reconstruction. Orthop J Sports Med, 2021, 9(2): 2325967120985153. doi: 10.1177/2325967120985153.
|
| 14. |
Zhang X, Teng F, Geng B, et al. The tibial tunnel drilling angles of 60° provided a lower ultimate load to failure on a single bundle posterior cruciate ligament graft using interference screw fixation compared to 30°/45°. Knee Surg Sports Traumatol Arthrosc, 2023, 31(9): 4035-4042.
|
| 15. |
Gill TJ, DeFrate LE, Wang C, et al. The effect of posterior cruciate ligament reconstruction on patellofemoral contact pressures in the knee joint under simulated muscle loads. Am J Sports Med, 2004, 32(1): 109-115.
|
| 16. |
Park SY, Nam HS, Ho JPY, et al. Association between tunnel position, tunnel angle, graft signal intensity, and graft thickness in the reconstructed posterior cruciate ligament. Orthop J Sports Med, 2023, 11(7): 23259671231168893. doi: 10.1177/23259671231168893.
|
| 17. |
Shin YS, Han SB, Hwang YK, et al. Tibial tunnel aperture location during single-bundle posterior cruciate ligament reconstruction: comparison of tibial guide positions. Arthroscopy, 2015, 31(5): 874-881.
|
| 18. |
Teng Y, Guo L, Wu M, et al. MRI analysis of tibial PCL attachment in a large population of adult patients: reference data for anatomic PCL reconstruction. BMC Musculoskelet Disord, 2016, 17(1): 384. doi: 10.1186/s12891-016-1232-3.
|
| 19. |
Edwards A, Bull AM, Amis AA. The attachments of the fiber bundles of the posterior cruciate ligament: an anatomic study. Arthroscopy, 2007, 23(3): 284-290.
|
| 20. |
Bowman KF, Sekiya JK. Anatomy and biomechanics of the posterior cruciate ligament, medial and lateral sides of the knee. Sports Med Arthrosc Rev, 2010, 18(4): 222-229.
|
| 21. |
Girgis FG, Marshall JL, Monajem A. The cruciate ligaments of the knee joint. Anatomical, functional and experimental analysis. Clin Orthop Relat Res, 1975(106): 216-231.
|
| 22. |
Deichsel A, Briese T, Liu W, et al. Specific fibre areas in the femoral footprint of the posterior cruciate ligament act as a major contributor in resisting posterior tibial displacement: A biomechanical robotic investigation. Knee Surg Sports Traumatol Arthrosc, 2025, 33(6): 2010-2018.
|
| 23. |
Winkler PW, Zsidai B, Wagala NN, et al. Evolving evidence in the treatment of primary and recurrent posterior cruciate ligament injuries, part 2: surgical techniques, outcomes and rehabilitation. Knee Surg Sports Traumatol Arthrosc, 2021, 29(3): 682-693.
|
| 24. |
Bergfeld JA, McAllister DR, Parker RD, et al. A biomechanical comparison of posterior cruciate ligament reconstruction techniques. Am J Sports Med, 2001, 29(2): 129-136.
|
| 25. |
Fanelli GC. PCL Transtibial tunnel reconstruction. Sports Med Arthrosc Rev, 2020, 28(1): 8-13.
|
| 26. |
Margheritini F, Mauro CS, Rihn JA, et al. Biomechanical comparison of tibial inlay versus transtibial techniques for posterior cruciate ligament reconstruction: analysis of knee kinematics and graft in situ forces. Am J Sports Med, 2004, 32(3): 587-593.
|
| 27. |
Markolf KL, McAllister DR, Young CR, et al. Biomechanical effects of medial-lateral tibial tunnel placement in posterior cruciate ligament reconstruction. J Orthop Res, 2003, 21(1): 177-182.
|
| 28. |
McAllister DR, Markolf KL, Oakes DA, et al. A biomechanical comparison of tibial inlay and tibial tunnel posterior cruciate ligament reconstruction techniques: graft pretension and knee laxity. Am J Sports Med, 2002, 30(3): 312-317.
|
| 29. |
Osti M, Hierzer D, Krawinkel A, et al. The predictive effect of anatomic femoral and tibial graft tunnel placement in posterior cruciate ligament reconstruction on functional and radiological outcome. Int Orthop, 2015, 39(6): 1181-1186.
|
| 30. |
Lee DW, Choi HW, Kim JG. Arthroscopic posterior cruciate ligament reconstruction with remnant preservation using a posterior trans-septal portal. Arthrosc Tech, 2017, 6(5): e1465-e1469.
|
| 31. |
Li Y, Zhang J, Song G, et al. The mechanism of "killer turn" causing residual laxity after transtibial posterior cruciate ligament reconstruction. Asia Pac J Sports Med Arthrosc Rehabil Technol, 2016, 3: 13-18.
|
| 32. |
Weimann A, Wolfert A, Zantop T, et al. Reducing the "killer turn" in posterior cruciate ligament reconstruction by fixation level and smoothing the tibial aperture. Arthroscopy, 2007, 23(10): 1104-1111.
|
| 33. |
Ohkoshi Y, Nagasaki S, Yamamoto K, et al. A new endoscopic posterior cruciate ligament reconstruction: Minimization of graft angulation. Arthroscopy, 2001, 17(3): 258-263.
|
| 34. |
Kim SJ, Shin JW, Lee CH, et al. Biomechanical comparisons of three different tibial tunnel directions in posterior cruciate ligament reconstruction. Arthroscopy, 2005, 21(3): 286-293.
|
| 35. |
Wong T, Wang CJ, Weng LH, et al. Functional outcomes of arthroscopic posterior cruciate ligament reconstruction: comparison of anteromedial and anterolateral trans-tibia approach. Arch Orthop Trauma Surg, 2009, 129(3): 315-321.
|
| 36. |
Kim SJ, Chang JH, Kang YH, et al. Clinical comparison of anteromedial versus anterolateral tibial tunnel direction for transtibial posterior cruciate ligament reconstruction: 2 to 8 years' follow-up. Am J Sports Med, 2009, 37(4): 693-698.
|
| 37. |
Huang TW, Wang CJ, Weng LH, et al. Reducing the "killer turn" in posterior cruciate ligament reconstruction. Arthroscopy, 2003, 19(7): 712-716.
|
| 38. |
Ahn JH, Bae JH, Lee YS, et al. An anatomical and biomechanical comparison of anteromedial and anterolateral approaches for tibial tunnel of posterior cruciate ligament reconstruction: evaluation of the widening effect of the anterolateral approach. Am J Sports Med, 2009, 37(9): 1777-1783.
|
| 39. |
Berg EE. Posterior cruciate ligament tibial inlay reconstruction. Arthroscopy, 1995, 11(1): 69-76.
|
| 40. |
McAllister DR, Hussain SM. Tibial inlay posterior cruciate ligament reconstruction: surgical technique and results. Sports Med Arthrosc Rev, 2010, 18(4): 249-253.
|
| 41. |
Shin YS, Kim HJ, Lee DH. No clinically important difference in knee scores or instability between transtibial and inlay techniques for PCL reconstruction: a systematic review. Clin Orthop Relat Res, 2017, 475(4): 1239-1248.
|
| 42. |
蔡伟创, 徐一宏, 徐卫东. 后十字韧带重建中"杀手转角"效应的应对方法及评价. 中华骨科杂志, 2023, 43(9): 598-604.
|
| 43. |
Park SE, Stamos BD, DeFrate LE, et al. The effect of posterior knee capsulotomy on posterior tibial translation during posterior cruciate ligament tibial inlay reconstruction. Am J Sports Med, 2004, 32(6): 1514-1519.
|
| 44. |
Fanelli GC, Beck JD, Edson CJ. Double bundle posterior cruciate ligament reconstruction: surgical technique and results. Sports Med Arthrosc Rev, 2010, 18(4): 242-248.
|
| 45. |
Lin Y, Huang Z, Zhang K, et al. Lower tibial tunnel placement in isolated posterior cruciate ligament reconstruction: clinical outcomes and quantitative radiological analysis of the killer turn. Orthop J Sports Med, 2020, 8(8): 2325967120923950. doi: 10.1177/2325967120923950.
|
| 46. |
Guo L, Sheng X, Dai C, et al. What is the optimal position of low tibial tunnel in transtibial posterior cruciate ligament reconstruction? A quantitative analysis based on 2D CT images and 3D knee models. Orthop Surg, 2025, 17(4): 1209-1219.
|
| 47. |
Wang Z, Xiong Y, Li Q, et al. Evaluation of tibial tunnel placement in single case posterior cruciate ligament reconstruction: reducing the graft peak stress may increase posterior tibial translation. BMC Musculoskelet Disord, 2019, 20(1): 521. doi: 10.1186/s12891-019-2862-z.
|
| 48. |
Galloway MT, Grood ES, Mehalik JN, et al. Posterior cruciate ligament reconstruction. An in vitro study of femoral and tibial graft placement. Am J Sports Med, 1996, 24(4): 437-445.
|
| 49. |
Wang Z, Xiong Y, Chen G, et al. Modified tibial tunnel placement for single-bundle posterior cruciate ligament reconstruction reduces the "Killer Turn" in a biomechanical model. Medicine (Baltimore), 2019, 98(52): e18439. doi: 10.1097/MD.0000000000018439.
|
| 50. |
Okoroafor UC, Saint-Preux F, Gill SW, et al. Nonanatomic tibial tunnel placement for single-bundle posterior cruciate ligament reconstruction leads to greater posterior tibial translation in a biomechanical model. Arthroscopy, 2016, 32(7): 1354-1358.
|
| 51. |
Stannard JP. Tibial Inlay posterior cruciate ligament reconstruction. Sports Med Arthrosc Rev, 2020, 28(1): 14-17.
|
| 52. |
Song EK, Park HW, Ahn YS, et al. Transtibial versus tibial inlay techniques for posterior cruciate ligament reconstruction: long-term follow-up study. Am J Sports Med, 2014, 42(12): 2964-2971.
|
| 53. |
毛云鹤, 唐婕晞, 李箭, 等. 膝关节多发韧带损伤不同手术时机与疗效相关性的Meta分析. 中国循证医学杂志, 2019, 19(4): 418-423.
|