1. |
中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2021概要. 中国循环杂志, 2022, 37(6): 553-578.The Writing Committee of the Report on Cardiovascular Health and Diseases in China. Report on cardiovascular health and diseases in China 2021: An updated summary. Chin Circ J, 2022, 37(6): 553-578.
|
2. |
Köhne I. Review and reflections about pulsatile ventricular assist devices from history to future: Concerning safety and low haemolysis-still needed. J Artif Organs, 2020, 23(4): 303-314.
|
3. |
Faghih MM, Sharp MK. Modeling and prediction of flow-induced hemolysis: A review. Biomech Model Mechanobiol, 2019, 18(4): 845-881.
|
4. |
Chen Z, Jena SK, Giridharan GA, et al. Flow features and device-induced blood trauma in CF-VADs under a pulsatile blood flow condition: A CFD comparative study. Int J Numer Method Biomed Eng, 2018, 34(2): e2924.
|
5. |
Giersiepen M, Wurzinger LJ, Opitz R, et al. Estimation of shear stress-related blood damage in heart valve prostheses—In vitro comparison of 25 aortic valves. Intern J Artif Organs, 1990, 13(5): 300-306.
|
6. |
Yen JH, Chen SF, Chern MK, et al. The effect of turbulent viscous shear stress on red blood cell hemolysis. J Artif Organs, 2014, 17(2): 178-185.
|
7. |
Jhun CS, Stauffer MA, Reibson JD, et al. Determination of reynolds shear stress level for hemolysis. ASAIO J, 2018, 64(1): 63-69.
|
8. |
Jing T, Cheng Y, Wang F, et al. Numerical investigation of centrifugal blood pump cavitation characteristics with variable speed. Processes, 2020, 8(3): 293.
|
9. |
Ganushchak YM, Körver EP, Maessen JG. Is there a "safe" suction pressure in the venous line of extracorporeal circulation system? Perfusion, 2020, 35(6): 521-528.
|
10. |
杨帆, 云忠, 胡及雨. 轴流式血泵轴承基于血液损伤的温度场分析. 中国医学物理学杂志, 2019, 36(8): 968-973.Yang F, Yun Z, Hu JY. Blood damage-based temperature field analysis of axial flow blood pump bearing. Chin J Med Phys, 2019, 36(8): 968-973.
|
11. |
王楚晨, 黄峰. 基于正弦转速调制的离心旋转血泵温度场分析. 排灌机械工程学报, 2022, 40(5): 454-460.Wang CC, Huang F. Temperature field analysis of centrifugal rotary blood pump based on sinusoidal speed modulation. J Drain Irrig Mach Eng, 2022, 40(5): 454-460.
|
12. |
Heuser G, Opitz R. A Couette viscometer for short time shearing of blood. Biorheology, 1980, 17(1-2): 17-24.
|
13. |
Zhang T, Taskin ME, Fang HB, et al. Study of flow-induced hemolysis using novel Couette-type blood-shearing devices. Artif Organs, 2011, 35(12): 1180-1186.
|
14. |
Yu H, Engel S, Janiga G, et al. A review of hemolysis prediction models for computational fluid dynamics. Artif Organs, 2017, 41(7): 603-621.
|
15. |
Bludszuweit C. Three-dimensional numerical prediction of stress loading of blood particles in a centrifugal pump. Artif Organs, 1995, 19(7): 590-596.
|
16. |
Ozturk M, Papavassiliou DV, O'Rear EA. An approach for assessing turbulent flow damage to blood in medical devices. J Biomech Eng, 2017, 139(1): 011008.
|
17. |
Avci M, Heck M, O'Rear EA, et al. Hemolysis estimation in turbulent flow for the FDA critical path initiative centrifugal blood pump. Biomech Model Mechanobiol, 2021, 20(5): 1709-1722.
|
18. |
Good BC, Manning KB. Computational modeling of the Food and Drug Administration's benchmark centrifugal blood pump. Artif Organs, 2020, 44(7): E263-E276.
|
19. |
Selmi M, Chiu WC, Chivukula VK, et al. Blood damage in left ventricular assist devices: Pump thrombosis or system thrombosis? Int J Artif Organs, 2019, 42(3): 113-124.
|
20. |
Onder A, Incebay O, Sen MA, et al. Heuristic optimization of impeller sidewall gaps-based on the bees algorithm for a centrifugal blood pump by CFD. Int J Artif Organs, 2021, 44(10): 765-772.
|
21. |
谢楠, 唐雨萌, 柳阳威, 等. 叶顶间隙对人工心脏泵血液相容性影响的数值研究. 航空动力学报, 2021, 36(6): 1304-1314.Xie N, Tang YM, Liu YW, et al. Numerical research on effects of blade tip clearances on the hemocompatibility of artificial heart pump. J Aerosp Power, 2021, 36(6): 1304-1314.
|
22. |
Liu GM, Jin DH, Zhou JY, et al. Numerical investigation of the influence of blade radial gap flow on axial blood pump performance. ASAIO J, 2019, 65(1): 59-69.
|
23. |
Rezaienia MA, Paul G, Avital E, et al. Computational parametric study of the axial and radial clearances in a centrifugal rotary blood pump. ASAIO J, 2018, 64(5): 643-650.
|
24. |
Fang P, Du J, Yu S. Impeller (straight blade) design variations and their influence on the performance of a centrifugal blood pump. Int J Artif Organs, 2020, 43(12): 782-795.
|
25. |
Park J, Oki K, Hesselmann F, et al. Biologically inspired, open, helicoid impeller design for mechanical circulatory assist. ASAIO J, 2020, 66(8): 899-908.
|
26. |
熊驰, 汤晓燕, 云忠, 等. 流道型轴流血泵流体仿真与水力实验分析. 中国医学物理学杂志, 2021, 38(10): 1308-1315.Xiong C, Tang XY, Yun Z, et al. Fluid simulation and hydraulic experimental analysis of flow-channel type axial-flow blood pump. Chinese Journal of Medical Physics, 2021, 38(10): 1308-1315.
|
27. |
荆腾, 潘爱娣, 顾发东, 等. 主动脉穿刺型轴流血泵折边结构叶轮的数值模拟及溶血分析. 排灌机械工程学报, 2024, 42(2): 109-117.Jing T, Pan AD, Gu FD, et al. Numerical simulation and hemolysis analysis of aortic perforating type axial bleeding pump with folded-edge structure impeller.J DrainIrrig Mach Eng, 2024, 42(2): 109-117.
|
28. |
Ghadimi B, Nejat A, Nourbakhsh SA, et al. Multi-objective genetic algorithm assisted by an artificial neural network metamodel for shape optimization of a centrifugal blood pump. Artif Organs, 2019, 43(5): E76-E93.
|
29. |
廖虎, 高全杰. 人工心脏泵水力及溶血性能多目标优化设计. 机械科学与技术, 2020, 39(7): 1086-1093.Liao H, Gao QJ. Multi-objective optimization and design of hydraulic and hemolysis performance of artificial heart pump. Mech Sci Technol Aerosp Eng, 2020, 39(7): 1086-1093.
|
30. |
Huang B, Guo M, Lu B, et al. Geometric optimization of an extracorporeal centrifugal blood pump with an unshrouded impeller concerning both hydraulic performance and shear stress. Processes, 2021, 9(7): 1211.
|
31. |
喻哲钦, 谭建平, 王带领, 等. 轴流式血泵分流叶片的多性能影响机理研究. 工程热物理学报, 2018, 39(3): 539-544.Yu ZQ, Tan JP, Wang DL, et al. Study on the influence mechanism of axial blood pump's splitter blades on multiple performances. J Eng Thermophys, 2018, 39(3): 539-544.
|
32. |
Yu Z, Tan J, Wang S, et al. Multiple parameters and target optimization of splitter blades for axial spiral blade blood pump using computational fluid mechanics, neural networks, and particle image velocimetry experiment. Sci Prog, 2021, 104(3): 368504211039363.
|
33. |
Li Y, Yu J, Wang H, et al. Investigation of the influence of blade configuration on the hemodynamic performance and blood damage of the centrifugal blood pump. Artif Organs, 2022, 46(9): 1817-1832.
|
34. |
李驰培, 杨秀萍, 陈俊, 等. 中间导叶对轴流血泵流动特性的影响分析. 第十二届全国生物力学学术会议暨第十四届全国生物流变学学术会议, 西安, 2018.Li CP, Yang XP, Chen J, et al. Analysis of the influence of intermediate guide vanes on the flow characteristics of axial blood pump. Proceedings of 12th National Conference on Biomechanics and 14th National Conference on Biorheology, Xi'an, 2018.
|
35. |
周冰晶, 张桂杰, 荆腾, 等. 心衰脉动过程两级轴流血泵溶血数值模拟. 排灌机械工程学报, 2018, 36(1): 28-34.Zhou BJ, Zhang GJ, Jing T, et al. Numerical simulation on hemolysis induced by two-stage axial-flow blood pump during pulsating heart failure. J DrainIrrig Mach Eng, 2018, 36(1): 28-34.
|
36. |
柳光茂, 席俭, 陈海波, 等. 具有分流和悬臂叶片尾导的轴流血泵设计分析. 生物医学工程学杂志, 2019, 36(3): 379-385.Liu GM, Xi J, Chen HB, et al. Design of an axial blood pump of diffuser with splitter blades and cantilevered main blades. J Biomed Eng, 2019, 36(3): 379-385.
|
37. |
Zhao ZX, Chen T, Liu XD, et al. Numerical investigation of an idealized total cavopulmonary connection physiology assisted by the axial blood pump with and without diffuser. CMES, 2020, 125(3): 1173-1184.
|
38. |
李驰培, 杨秀萍, 陈俊, 等. 轴流血泵流场分析与结构改进. 制造业自动化, 2018, 40(11): 49-52.Li CP, Yang XP, Chen J, et al. Flow field analysis and structure optimization of axial blood pump. Manuf Autom, 2018, 40(11): 49-52.
|
39. |
Wang Y, Shen P, Zheng M, et al. Influence of impeller speed patterns on hemodynamic characteristics and hemolysis of the blood pump. Appl Sci (Basel), 2019, 9(21): 4689.
|
40. |
Yamane T, Adachi K, Kosaka R, et al. Suitable hemolysis index for low-flow rotary blood pumps. J Artif Organs, 2021, 24(2): 120-125.
|
41. |
Wang S, Tan J, Yu Z. Shear stress and hemolysis analysis of blood pump under constant and pulsation speed based on a multiscale coupling model. Math Probl Eng, 2020, 2020(1922): 1-14.
|
42. |
Ahmed A, Wang X, Yang M. Biocompatible materials of pulsatile and rotary blood pumps: A brief review. Rev Advanc Mater Sci, 2020, 59(1): 322-339.
|
43. |
Takashi yamane. Mechanism of artificial heart. Springer, Tokyo, 2016.
|
44. |
Zhang M, Tansley GD, Dargusch MS, et al. Surface coatings for rotary ventricular assist devices: A systematic review. ASAIO J, 2022, 68(5): 623-632.
|
45. |
Maruyama O, Nishida M, Yamane T, et al. Hemolysis resulting from surface roughness under shear flow conditions using a rotational shear stressor. Artif Organs, 2006, 30(5): 365-370.
|
46. |
刘红涛, 王长峰, 曹勇, 等. 血泵壳体零件高精度面研磨方法. 导航与控制, 2022, 21(1): 107-112, 73.Liu HT, Wang CF, Cao Y, et al. High-precision surface grinding method of blood pump shell parts. Navig Control, 2022, 21(1): 107-112, 73.
|