1. |
Han B, Zheng R, Zeng H, et al. Cancer incidence and mortality in China, 2022. J Natl Cancer Cent, 2024, 4(1): 47-53.
|
2. |
National Lung Screening Trial Research Team, Aberle DR, Adams AM, et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med, 2011, 365(5): 395-409.
|
3. |
Moreira AL, Ocampo PSS, Xia Y, et al. A grading system for invasive pulmonary adenocarcinoma: A proposal from the International Association for the Study of Lung Cancer Pathology Committee. J Thorac Oncol, 2020, 15(10): 1599-1610.
|
4. |
梁云, 谢宁, 刁晶艳, 等. 人工智能量化参数预测肺结节浸润程度的临床价值. 中国胸心血管外科临床杂志, 2022, 29(7): 878-885.Liang Y, Xie N, Diao JY, et al. Value of artificial intelligence quantitative parameters in predicting the infiltration of pulmonary nodules. Chin J Clin Thorac Cardiovasc Surg, 2022, 29(7): 878-885.
|
5. |
冉姗姗, 陈佳情, 罗朝芬, 等. 基于人工智能的影像组学在肺癌诊疗中的应用进展. 国际医学放射学杂志, 2024, 47(3): 294-299.Ran SS, Chen JQ, Luo CF, et al. Application progress of radiomics based on artificial intelligence in the diagnosis and treatment of lung cancer. J Int Med Radiol, 2024, 47(3): 294-299.
|
6. |
Bera K, Braman N, Gupta A, et al. Predicting cancer outcomes with radiomics and artificial intelligence in radiology. Nat Rev Clin Oncol, 2022, 19(2): 132-146.
|
7. |
单文莉, 孔丹, 张辉, 等. 浸润性肺腺癌分化程度预测模型的临床价值. 中华肿瘤杂志, 2022, 44(7): 767-775.Shan WL, Kong D, Zhang H, et al. Clinical value of prediction models for differentiation degree in invasive pulmonary adenocarcinoma. Chin J Oncol, 2022, 44(7): 767-775.
|
8. |
何花, 杨德伦, 孙硕, 等. 基于影像组学的机器学习模型辅助肺磨玻璃结节浸润程度鉴别的应用价值. 中国胸心血管外科临床杂志, 2023, 30(4): 522-531.He H, Yang DL, Sun S, et al. Application value of radiomics-based machine learning models in differentiating the invasion degree of lung ground-glass nodules. Chin J Clin Thorac Cardiovasc Surg, 2023, 30(4): 522-531.
|
9. |
顾鑫蕾, 刘展, 邵为朋, 等. 肺结节CT特征对腺癌病理亚型的预测价值. 中国胸心血管外科临床杂志, 2022, 29(6): 684-692.Gu XL, Liu Z, Shao WP, et al. Predictive value of CT features of lung nodules for pathological subtypes of adenocarcinoma. Chin J Clin Thorac Cardiovasc Surg, 2022, 29(6): 684-692.
|
10. |
梁演婷, 林欢, 李夙芸, 等. CT特征联合人工智能定量参数评估ⅠA 期肺腺癌高级别组织学亚型. 中国医学影像技术, 2023, 39(2): 199-203.Liang YT, Lin H, Li SY, et al. Assessment of high-grade histological subtypes of stage Ⅰa pulmonary adenocarcinoma using ct features combined with artificial intelligence quantitative parameters. Chin J Med Imaging Technol, 2023, 39(2): 199-203.
|
11. |
黄汉清, 叶波. 肿瘤实性成分占比在早期周围型肺癌诊疗中的研究进展. 中国肺癌杂志, 2022, 25(10): 764-770.Huang HQ, Ye B. Research progress on the proportion of solid components in the diagnosis and treatment of early peripheral lung cancer. Chin J Lung Cancer, 2022, 25(10): 764-770.
|
12. |
Suzuki K, Koike T, Asakawa T, et al. A prospective radiological study of thin-section computed tomography to predict pathological noninvasiveness in peripheral clinical ⅠA lung cancer (Japan Clinical Oncology Group 0201). J Thorac Oncol, 2011, 6(4): 751-756.
|
13. |
Tsutani Y, Suzuki K, Koike T, et al. High-risk factors for recurrence of stageⅠ lung adenocarcinoma: Follow-up data from JCOG0201. Ann Thorac Surg, 2019, 108(5): 1484-1490.
|
14. |
Kim SK, Kim TJ, Chung MJ, et al. Lung adenocarcinoma: CT features associated with spread through air spaces. Radiology, 2018, 289(3): 831-840.
|
15. |
Zhang Y, Fu F, Wen Z, et al. Segment location and ground glass opacity ratio reliably predict node-negative status in lung cancer. Ann Thorac Surg, 2020, 109(4): 1061-1068.
|
16. |
Nakahashi K, Tsunooka N, Hirayama K, et al. Preoperative predictors of lymph node metastasis in clinical T1 adenocarcinoma. J Thorac Dis, 2020, 12(5): 2352-2360.
|
17. |
Xi J, Yin J, Liang J, et al. Prognostic impact of radiological consolidation tumor ratio in clinical stageⅠa pulmonary ground glass opacities. Front Oncol, 2021, 11: 616149.
|
18. |
Ahn B, Yoon S, Kim D, et al. Clinicopathologic and genomic features of high-grade pattern and their subclasses in lung adenocarcinoma. Lung Cancer, 2022, 170: 176-184.
|
19. |
Saji H, Okada M, Tsuboi M, et al. Segmentectomy versus lobectomy in small-sized peripheral non-small-cell lung cancer (JCOG0802/WJOG4607L): A multicentre, open-label, phase 3, randomised, controlled, non-inferiority trial. Lancet, 2022, 399(10335): 1607-1617.
|
20. |
Altorki N, Wang X, Kozono D, et al. Lobar or sublobar resection for peripheral stageⅠa non-small-cell lung cancer. N Engl J Med, 2023, 388(6): 489-498.
|
21. |
Aokage K, Suzuki K, Saji H, et al. Segmentectomy for ground-glass-dominant lung cancer with a tumor diameter of 3 cm or less including ground-glass opacity (JCOG1211): A multicentre, single-arm, confirmatory, phase 3 trial. Lancet Respir Med, 2023, 11(6): 540-549.
|
22. |
Jeon YJ, Lee J, Shin S, et al. Prognostic impact of micropapillary and solid histological subtype on patients undergoing curative resection for stageⅠ lung adenocarcinoma according to the extent of pulmonary resection and lymph node assessment. Lung Cancer, 2022, 168: 21-29.
|
23. |
Chen T, Guestrin C. XGBoost: A scalable tree boosting system. DD'16: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Miningacm, 2016: 785-794.
|
24. |
冷菲, 李巍. 基于XGBoost对肺鳞癌和肺腺癌的分类预测. 首都医科大学学报, 2019, 40(6): 889-893.Leng F, Li W. Classification prediction of lung squamous cell carcinoma and lung adenocarcinoma based on XGBoost. J Capital Med Univ, 2019, 40(6): 889-893.
|