1. |
国家心血管病中心, 中国心血管健康与疾病报告编写组, 胡盛寿. 中国心血管健康与疾病报告2023概要. 中国循环杂志, 2024, 39(7): 625-660.National Center for Cardiovascular Diseases, Writing Group of Report on Cardiovascular Health and Diseases, Hu SS. Report on Cardiovascular Health and Diseases in China 2023: An updated summary. Chin J Circ, 2024, 39(7): 625-660.
|
2. |
林心平, 王建安. 中国心脏瓣膜病介入治疗的现状与进展. 心电与循环, 2019, 38(5): 353-356.Lin XP, Wang JA. Current status and progress of interventional therapy for heart valve disease in China. Cardiol Circ, 2019, 38(5): 353-356.
|
3. |
Timmis A, Aboyans V, Vardas P, et al. European Society of Cardiology: The 2023 atlas of cardiovascular disease statistics. Eur Heart J, 2024, 45(38): 4019-4062.
|
4. |
Chan V, Malas T, Lapierre H, et al. Reoperation of left heart valve bioprostheses according to age at implantation. Circulation, 2011, 124(11 Suppl): S75-S80.
|
5. |
Mack M, Carroll JD, Thourani V, et al. Transcatheter mitral valve therapy in the United States: A report from the STS-ACC TVT Registry. J Am Coll Cardiol, 2021, 78(23): 2326-2353.
|
6. |
Edler I, Lindström K. The history of echocardiography. Ultrasound Med Biol, 2004, 30(12): 1565-1644.
|
7. |
马宁. 超声心动图用于诊断及治疗儿童心脏瓣膜病进展. 中国医学影像技术, 2024, 40(7): 961-963.Ma N. Progress of echocardiography for diagnosis and treatment of heart valve disease in children. China Med Imaging Technol, 2024, 40(7): 961-963.
|
8. |
Rawshani A, Sattar N, McGuire DK, et al. Left-sided degenerative valvular heart disease in type 1 and type 2 diabetes. Circulation, 2022, 146(5): 398-411.
|
9. |
Bonow RO, Leon MB, Doshi D, et al. Management strategies and future challenges for aortic valve disease. Lancet, 2016, 387(10025): 1312-1323.
|
10. |
Banovic M, Putnik S, Penicka M, et al. Aortic valve replacement versus conservative treatment in asymptomatic severe aortic stenosis: The AVATAR Trial. Circulation, 2022, 145(9): 648-658.
|
11. |
Nishimura RA, Vahanian A, Eleid MF, et al. Mitral valve disease: Current management and future challenges. Lancet, 2016, 387(10025): 1324-1334.
|
12. |
Lim GB. Combining TAVI with PCI in patients with aortic stenosis and CAD. Nat Rev Cardiol, 2024, 21(11): 742.
|
13. |
Hirasawa K, Izumo M, Akashi YJ. Stress echocardiography in valvular heart disease. Front Cardiovasc Med, 2023, 10: 1233924.
|
14. |
Srabanti MG, Adams C, Kadem L, et al. Role of non-invasive hemodynamic forces through four-dimensional-flow magnetic resonance imaging (4D-Flow MRI) in evaluating mitral regurgitation with preserved ejection fraction: Seeking novel biomarkers. Appl Sci, 2024, 14(19): 8577.
|
15. |
Patel KP, Vandermolen S, Herrey AS, et al. Cardiac computed tomography: Application in valvular heart disease. Front Cardiovasc Med, 2022, 9: 849540.
|
16. |
Singh S, Chaudhary R, Bliden KP, et al. Meta-analysis of the performance of AI-driven ECG interpretation in the diagnosis of valvular heart diseases. Am J Cardiol, 2024, 213: 126-131.
|
17. |
Torre-Cruz J, Canadas-Quesada F, Ruiz-Reyes N, et al. Detection of valvular heart diseases combining orthogonal non-negative matrix factorization and convolutional neural networks in PCG signals. J Biomed Inform, 2023, 145: 104475.
|
18. |
Friedrich S, Groß S, König IR, et al. Applications of artificial intelligence/machine learning approaches in cardiovascular medicine: A systematic review with recommendations. Eur Heart J Digit Health, 2021, 2(3): 424-436.
|
19. |
Wang Z, Qian K, Liu H, et al. Exploring interpretable representations for heart sound abnormality detection. Biomed Signal Process Control, 2023, 82: 104569.
|
20. |
Wang L, Wang H, Huang Y, et al. Trends in the application of deep learning networks in medical image analysis: Evolution between 2012 and 2020. Eur J Radiol, 2022, 146: 110069.
|
21. |
Yang Y, Wang Z, Chen Z, et al. Current status and etiology of valvular heart disease in China: A population-based survey. BMC Cardiovasc Disord, 2021, 21(1): 339.
|
22. |
Greco E, Vinciguerra M, Sampaio R, et al. Editorial: New insights in heart valve disease 2022. Front Cardiovasc Med, 2023, 10: 1226113.
|
23. |
Elias P, Poterucha TJ, Rajaram V, et al. Deep learning electrocardiographic analysis for detection of left-sided valvular heart disease. J Am Coll Cardiol, 2022, 80(6): 613-626.
|
24. |
Kim K, Ko YG, Shim CY, et al. Impact of new-onset persistent left bundle branch block on reverse cardiac remodeling and clinical outcomes after transcatheter aortic valve replacement. Front Cardiovasc Med, 2022, 9: 893878.
|
25. |
Kwon JM, Lee SY, Jeon KH, et al. Deep learning-based algorithm for detecting aortic stenosis using electrocardiography. J Am Heart Assoc, 2020, 9(7): e014717.
|
26. |
Cohen-Shelly M, Attia ZI, Friedman PA, et al. Electrocardiogram screening for aortic valve stenosis using artificial intelligence. Eur Heart J, 2021, 42(30): 2885-2896.
|
27. |
Omar M. For the FITs: Time to embrace the future: AI-assisted ECG detection of VHD, SHD. Cardiol Mag, 2024, 3(29): 1-6.
|
28. |
Parlato S, Muto V, Bifulco P. A novel approach to recognize valvular heart diseases based on morphological similarity of heartbeats in seismocardiography signals. International Conference on e-Health and Bioengineering. Cham: Springer Nature Switzerland, 2023: 188-195.
|
29. |
Chung CT, Lee S, King E, et al. Clinical significance, challenges and limitations in using artificial intelligence for electrocardiography-based diagnosis. Int J Arrhythmia, 2022, 23(1): 24.
|
30. |
Zeng W, Lin Z, Yuan C, et al. Detection of heart valve disorders from PCG signals using TQWT, FA-MVEMD, Shannon energy envelope and deterministic learning. Artif Intell Rev, 2021, 2021: 1-38.
|
31. |
Yaseen, Son GY, Kwon S. Classification of heart sound signal using multiple features. Appl Sci, 2018, 8(12): 2344.
|
32. |
Al-Issa Y, Alqudah AM. A lightweight hybrid deep learning system for cardiac valvular disease classification. Sci Rep, 2022, 12(1): 14297.
|
33. |
Bhardwaj A, Singh S, Joshi D. Explainable deep convolutional neural network for valvular heart diseases classification using PCG signals. IEEE trans Instrum Meas, 2023, 72: 1-15.
|
34. |
Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need. 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA. https://doi.org/10.48550/arXiv.1706.03762.
|
35. |
Abbas Q, Hussain A, Baig AR. Automatic detection and classification of cardiovascular disorders using phonocardiogram and convolutional vision transformers. Diagnostics (Basel), 2022, 12(12): 3109.
|
36. |
Jamil S, Roy AM. An efficient and robust phonocardiography (PCG)-based valvular heart diseases (VHD) detection framework using vision transformer (ViT). Comput Biol Med, 2023, 158: 106734.
|
37. |
Bouktif S, Fiaz A, Ouni A, et al. Optimal deep learning LSTM model for electric load forecasting using feature selection and genetic algorithm: Comparison with machine learning approaches. Energies, 2018, 11(7): 1636.
|
38. |
Makimoto H, Shiraga T, Kohlmann B, et al. Efficient screening for severe aortic valve stenosis using understandable artificial intelligence: A prospective diagnostic accuracy study. Eur Heart J Digit Health, 2022, 3(2): 141-152.
|
39. |
Lee SY, Su PH, Hsieh YT, et al. Intelligent stethoscope system and diagnosis platform with synchronized heart sound and electrocardiogram signals. IEEE Access, 2023, 11: 47420-47431.
|
40. |
Shiraga T, Makimoto H, Kohlmann B, et al. Improving valvular pathologies and ventricular dysfunction diagnostic efficiency using combined auscultation and electrocardiography data: A multimodal AI approach. Sensors (Basel), 2023, 23(24): 9834.
|
41. |
Soto JT, Weston Hughes J, Sanchez PA, et al. Multimodal deep learning enhances diagnostic precision in left ventricular hypertrophy. Eur Heart J Digit Health, 2022, 3(3): 380-389.
|
42. |
Zhao Q, Geng S, Wang B, et al. Deep learning for heart sound analysis: A literature review. MedRxiv, 2023. https://doi.org/10.1101/2023.09.16.23295653.
|
43. |
Kipf TN, Welling M. Semi-supervised classification with graph convolutional networks. arXiv, 2016. https://doi.org/10.48550/arXiv.1609.02907.
|
44. |
Habashi AG, Azab AM, Eldawlatly S, et al. Generative adversarial networks in EEG analysis: An overview. J Neuroeng Rehabil, 2023, 20(1): 40.
|
45. |
Ivantsits M, Tautz L, Huellebrand M, et al. MV-GNN: Generation of continuous geometric representations of mitral valve motion from 3D+T echocardiography. Comput Biol Med, 2024, 182: 109154.
|
46. |
Thomas S, Tiago C, Andreassen BS, et al. Graph convolutional neural networks for automated echocardiography view recognition: A holistic approach. International Workshop on Advances in Simplifying Medical Ultrasound. Cham: Springer Nature Switzerland, 2023: 44-54.
|
47. |
Rayavarapu SM, Prasanthi TS, Kumar GS, et al. A generative model for deep fake augmentation of phonocardiogram and electrocardiogram signals using LSGAN and cycle GAN. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska, 2023, 13(4): 34-38.
|
48. |
Vinay NA, Vidyasagar KN, Rohith S, et al. An RNN-Bi LSTM based multi decision GAN approach for the recognition of cardiovascular disease (CVD) from heart beat sound: A feature optimization process. IEEE Access, 2024, 12: 65482-65502.
|
49. |
Zheng C, Peng W, Huang T, et al. High accurate detection method for aortic valve opening of seismocardiography signals. Biomed Signal Process Control, 2024, 87: 105484.
|
50. |
Sieciński S, Tkacz EJ, Kostka PS. Heart rate variability analysis on electrocardiograms, seismocardiograms and gyrocardiograms of healthy volunteers and patients with valvular heart diseases. Sensors (Basel), 2023, 23(4): 2152.
|
51. |
王永威, 魏德健, 曹慧, 等. 深度学习在心力衰竭检测中的应用综述. 计算机科学与探索, 2025, 19(1): 65-78.Wang YW, Wei DJ, Cao H, et al. A review of deep learning in heart failure detection. Comp Sci Explor, 2025, 19(1): 65-78.
|
52. |
Wells PS, Anderson DR, Rodger M, et al. Excluding pulmonary embolism at the bedside without diagnostic imaging: Management of patients with suspected pulmonary embolism presenting to the emergency department by using a simple clinical model and d-dimer. Ann Intern Med, 2001, 135(2): 98-107.
|
53. |
Seymour CW, Liu VX, Iwashyna TJ, et al. Assessment of clinical criteria for sepsis: For the third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA, 2016, 315(8): 762-774.
|
54. |
Namasivayam M, Myers PD, Guttag JV, et al. Predicting outcomes in patients with aortic stenosis using machine learning: The Aortic Stenosis Risk (ASteRisk) score. Open Heart, 2022, 9(1): e001990.
|
55. |
Baker N, Thompson B, Fox D. ChatGPT can write a paper in an hour-but there are downsides. Nature. (2023-07-12) [2024-09-12]. https://www.nature.com/articles/d41586-023-02298-x.
|
56. |
DeLong KA, Trott S, Kutas M. Offline dominance and zeugmatic similarity normings of variably ambiguous words assessed against a neural language model (BERT). Behav Res Methods, 2023, 55(4): 1537-1557.
|
57. |
Sarraju A, Ouyang D, Itchhaporia D. The opportunities and challenges of large language models in cardiology. JACC Adv, 2023, 2(7): 100438.
|
58. |
Vaid A, Duong SQ, Lampert J, et al. Local large language models for privacy-preserving accelerated review of historic echocardiogram reports. J Am Med Inform Assoc, 2024, 31(9): 2097-2102.
|
59. |
Kwon T, Ong KT, Kang D, et al. Large language models are clinical reasoners: Reasoning-aware diagnosis framework with prompt-generated rationales. Proceedings of the AAAI Conference on Artificial Intelligence, 2024, 38(16): 18417-18425.
|
60. |
Novak A, Rode F, Lisičić A, et al. The pulse of artificial intelligence in cardiology: A comprehensive evaluation of state-of-the-art large language models for potential use in clinical cardiology. MedRxiv, 2023. https://doi.org/10.1101/2023.08.08.23293689.
|
61. |
Quer G, Topol EJ. The potential for large language models to transform cardiovascular medicine. Lancet Digit Health, 2024, 6(10): e767-e771.
|