1. |
郑荣寿, 陈茹, 韩冰峰, 等. 2022年中国恶性肿瘤流行情况分析. 中华肿瘤杂志, 2024, 46(3): 221-231.Zheng RS, Chen R, Han BF, et al. Cancer incidence and mortality in China, 2022. Chin J Oncol, 2024, 46(3): 221-231.
|
2. |
NCCN. The NCCN clinical practice guidelines in oncology for non-small cell lung cancer (version 5.2024). Accessed on 2024-05-10.
|
3. |
中国临床肿瘤学会指南工作委员会. 中国临床肿瘤学会(CSCO)分化型甲状腺癌诊疗指南2021. 肿瘤预防与治疗, 2021, 34(12): 1164-1200.Guidelines Working Committee of the CSCO. Chinese Society of Clinical Oncology (CSCO) Guidelines for the Diagnosis and Treatment of Non-small Cell Lung Cancer 2024. Beijing: People's Health Publishing House, 2024: 6.
|
4. |
中华医学会呼吸病学分会, 中国肺癌防治联盟专家组. 肺结节诊治中国专家共识(2024年版). 中华结核和呼吸杂志, 2024, 47(8): 716-729.Chinese Thoracic Society, Chinese Medical Association. Chinese expert consensus on diagnosis and treatment of pulmonary nodules(2024). Chin J Tubercul Res Dis, 2024, 47(8): 716-729.
|
5. |
中国肺癌防治联盟, 中华医学会呼吸病学分会肺癌学组, 中国医师协会呼吸医师分会肺癌工作委员会. 肺癌筛查与管理中国专家共识. 国际呼吸杂志, 2019, 39(21): 1604-1615.China Lung Cancer Prevention and Control Alliance, The Lung Cancer Group of the Respiratory Disease Branch of the Chinese Medical Association, The Lung Cancer Working Committee of the Respiratory Physician Branch of the Chinese Medical Doctor Association. Chinese expert consensus on screening and management of lung cancer. Int J Respir, 2019, 39(21): 1604-1615.
|
6. |
de Margerie-Mellon C, Chassagnon G. Artificial intelligence: A critical review of applications for lung nodule and lung cancer. Diagn Interv Imaging, 2023, 104(1): 11-17.
|
7. |
Wang X, Peng Y, Lu L, et al. Chest X-ray8: Hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. IEEE, 2017: 1-9.
|
8. |
Irvin JA, Rajpurkar P, Ko M, et al. CheXpert: A large chest radiograph dataset with uncertainty labels and expert comparison: AAAI Conference on Artificial Intelligence, 2019.
|
9. |
Johnson AEW, Pollard TJ, Berkowitz SJ, et al. MIMIC-CXR, a de-identified publicly available database of chest radiographs with free-text reports. Sci Data, 2019, 6(1): 317.
|
10. |
Pehrson LM, Nielsen MB, Ammitzbøl Lauridsen C. Automatic pulmonary nodule detection applying deep learning or machine learning algorithms to the LIDC-IDRI Database: A systematic review. Diagnostics (Basel), 2019, 9(1): 29.
|
11. |
Naseer I, Akram S, Masood T, et al. Performance analysis of state-of-the-art CNN Architectures for LUNA16. Sensors (Basel), 2022, 22(12): 4426.
|
12. |
Yan K, Wang X, Lu L, et al. DeepLesion: Automated mining of large-scale lesion annotations and universal lesion detection with deep learning. J Med Imaging (Bellingham), 2018, 5(3): 036501.
|
13. |
Bustos A, Pertusa A, Salinas JM, et al. PadChest: A large chest X-ray image dataset with multi-label annotated reports. Med Image Anal, 2020 Dec: 66: 101797.
|
14. |
Nguyen HQ, Lam K, Le LT, et al. VinDr-CXR: An open dataset of chest X-rays with radiologist's annotations. Sci Data, 2022, 9(1): 429.
|
15. |
National lung screening trial research team. Lung cancer incidence and mortality with extended follow-up in the national lung screening trial. J Thorac Oncol, 2019, 14(10): 1732-1742.
|
16. |
Grove O, Berglund AE, Schabath MB, et al. Quantitative computed tomographic descriptors associate tumor shape complexity and intratumor heterogeneity with prognosis in lung adenocarcinoma. PLoS One, 2015, 10(3): e0118261.
|
17. |
Yang J, Veeraraghavan H, Armato SG, et al. Autosegmentation for thoracic radiation treatment planning: A grand challenge at AAPM 2017. Med Phys, 2018, 45(10): 4568-4581.
|
18. |
Yan K, Wang X, Lu L, et al. DeepLesion: Automated mining of large-scale lesion annotations and universal lesion detection with deep learning. J Med Imaging (Bellingham), 2018, 5(3): 036501.
|
19. |
王子奇. 基于多维度数据新型肺结节良恶性鉴别诊断模型的建立和靶标研究. 郑州大学, 2022.WANG ZQ. Study on the novel predictive model and biomarkers for the differential diagnosis of pulmonary nodules based on multi-level data. Zhengzhou Univ, 2022.
|
20. |
Wu Z, Huang T, Zhang S, et al. A prediction model to evaluate the pretest risk of malignancy in solitary pulmonary nodules: Evidence from a large Chinese southwestern population. J Cancer Res Clin Oncol, 2021, 147(1): 275-285.
|
21. |
Chen K, Nie Y, Park S, et al. Development and validation of machine learning-based model for the prediction of malignancy in multiple pulmonary nodules: Analysis from multicentric cohorts. Clin Cancer Res, 2021, 27(8): 2255-2265.
|
22. |
Yang D, Zhang X, Powell CA, et al. Probability of cancer in high-risk patients predicted by the protein-based lung cancer biomarker panel in China: LCBP study. Cancer, 2018, 124(2): 262-270.
|
23. |
Liu HY, Zhao XR, Chi M, et al. Risk assessment of malignancy in solitary pulmonary nodules in lung computed tomography: A multivariable predictive model study. Chin Med J (Engl), 2021, 134(14): 1687-1694.
|
24. |
蒋捷, 刘锋, 王波, 等. CT联合肿瘤标志物预测肺结节低分化腺癌的模型构建. 中国胸心血管外科临床杂志, 2025, 32(1): 73-79.Jiang J, Liu F, Wang B, et al. Construction of a predictive model for poorly differentiated adenocarcinoma in pulmonary nodules using CT combined with tumor markers. Chin J Clin Thorac Cardiovasc Surg, 2025, 32(1): s73-s79.
|
25. |
Chung K, Mets OM, Gerke PK, et al. Brock malignancy risk calculator for pulmonary nodules: validation outside a lung cancer screening population. Thorax, 2018, 73(9): 857-863.
|
26. |
丁辉, 胡传贤, 黄苏, 等. 基于CT和18F-FDGPET/CT的肺癌风险预测模型对肺结节恶性风险的验证研究. 国际放射医学核医学杂志, 2019, 43(1): 17-21.Ding H, Hu CX, Huang S, et al. Verification of malignant risk of pulmonary nodules based on CT and 18F-FDG PET/CT prediction model. Intern J Rad Med Nuclear Med, 2019, 43(1): 17-21.
|
27. |
van Leeuwen KG, Schalekamp S, Rutten MJCM, et al. Artificial intelligence in radiology: 100 commercially available products and their scientific evidence. Eur Radiol, 2021, 31(6): 3797-3804.
|
28. |
Milam ME, Koo CW. The current status and future of FDA-approved artificial intelligence tools in chest radiology in the United States. Clin Radiol, 2023, 78(2): 115-122.
|
29. |
Homayounieh F, Digumarthy S, Ebrahimian S, et al. An Artificial intelligence-based chest X-ray model on human nodule detection accuracy from a multicenter study. JAMA Netw Open, 2021, 4(12): e2141096.
|
30. |
van Leeuwen KG, Schalekamp S, Rutten MJCM, et al. Comparison of commercial AI software performance for radiograph lung nodule detection and bone age prediction. Radiology, 2024, 310(1): e230981.
|
31. |
王亮, 许迪, 孙丹丹, 等. 人工智能辅助软件可提升疲劳状态下放射科规培医师对肺结节的检测效能. 放射学实践, 2021, 36(4): 475-479.Wang L, Xu D, SUN DD, et al. Study on the effect of AI-assisted software on the detection efficiency of pulmonary nodules in fatigued radiological residents in standardized training. Radiologic Practice, 2021, 36(4): 475-479.
|
32. |
蔡少辉, 林巧娟, 杨树木, 等. CT与AI肺结节诊断系统对诊断肺结节及鉴别分型的临床价值. 医疗装备, 2024, 37(5): 30-33.Cai SH, Lin QJ, Yang SM, et al. Clinical value of CT and AI pulmonary nodule diagnosis system in diagnosis and differential classification of pulmonary nodule. Medical Equipment, 2024, 37(5): 30-33.
|
33. |
邢宇彤, 刘建成, 孙百臣, 等. 区域医疗中心人工智能辅助诊断肺结节的临床应用. 中国胸心血管外科临床杂志, 2021, 28(10): 1178-1182.Xing YT, Liu JC, Sun BC, et al. Clinical application of artificial intelligence to lung nodules diagnosis in regional medical center. Chin J Clin Thorac Cardiovasc Surg, 2021, 28(10): 1178-1182.
|
34. |
张潇文, 朱晓雷, 刘鸿鸣, 等. 多学科诊疗团队模式下的肺癌诊疗一体化. 中国胸心血管外科临床杂志, 2022, 29(7): 806-811.Zhang XW, Zhu XL, Liu HM, et al. Integration of diagnosis and treatment of pulmonary nodules under multidisciplinary treatment mode. Chin J Clin Thorac Cardiovasc Surg, 2022, 29(7): 806-811.
|
35. |
叶文卫, 刘碧华, 郭天畅. 基于深度学习人工智能在肺结节定性诊断中的临床应用研究. 影像研究与医学应用, 2024, 8(3): 8-10,16.Ye WW, Liu BH, Guo TC. Clinical application of deep learning artificial intelligence in qualitative diagnosis of pulmonary nodules. J Imaging Res Med Appl, 2024, 8(3): 8-10,16.
|
36. |
李斌, 刘永波, 崔龑, 等. 人工智能影像辅助诊断系统阅片在鉴别肺结节性质中的价值分析. 现代医学与健康研究电子杂志, 2024, 8(4): 110-113.Li B, Liu YB, Cui Y, et al. Value analysis of film reading by artificial intelligence image-assisted diagnosis system in distinguishing pulmonary nodule properties. Mod Med Health Res Electron J, 2024, 8(4): 110-113.
|
37. |
Han Y, Qi H, Wang L, et al. Pulmonary nodules detection assistant platform: An effective computer aided system for early pulmonary nodules detection in physical examination. Comput Methods Programs Biomed, 2022, 217: 106680.
|
38. |
Goncalves S, Fong P C, Blokhina M. Artificial intelligence for early diagnosis of lung cancer through incidental nodule detection in low- and middle-income countries-acceleration during the COVID-19 pandemic but here to stay. Am J Cancer Res, 2022, 12(1): 1-16.
|
39. |
Salman R, Nguyen H N, Sher AC, et al. Diagnostic performance of artificial intelligence for pediatric pulmonary nodule detection in computed tomography of the chest. Clin Imaging, 2023, 101: 50-55.
|
40. |
Goncalves S, Fong PC, Blokhina M. Artificial intelligence for early diagnosis of lung cancer through incidental nodule detection in low- and middle-income countries-acceleration during the COVID-19 pandemic but here to stay. Am J Cancer Res, 2022, 12(1): 1-16.
|
41. |
Salman R, Nguyen HN, Sher AC, et al. Diagnostic performance of artificial intelligence for pediatric pulmonary nodule detection in computed tomography of the chest. Clin Imaging, 2023, 101: 50-55.
|
42. |
Wu MY, Li Y, Fu BJ, et al. Evaluate the performance of four artificial intelligence-aided diagnostic systems in identifying and measuring four types of pulmonary nodules. J Appl Clin Med Phys, 2021, 22(1): 318-326.
|
43. |
董来东, 黄果. 基于CT影像的人工智能辅助诊断系统对4771例肺癌诊断价值的系统评价与Meta分析. 中国胸心血管外科临床杂志, 2021, 28(10): 1183-1191.Dong LD, Huan G. Diagnostic value of artificial intelligence-assisted diagnostic system for pulmonary cancer based on CT images: A systematic review and meta-analysis of 4771 patients. Chin J Clin Thorac Cardiovasc Surg, 2021, 28(10): 1183-1191.
|
44. |
Liu JA, Yang IY, Tsai EB. Artificial intelligence (AI) for lung nodules, from the AJR special series on AI applications. AJR Am J Roentgenol, 2022, 219(5): 703-712.
|
45. |
Pereira CS, Rocha J, Campilho A, et al. Lightweight multi-scale classification of chest radiographs via size-specific batch normalization. Comput Methods Programs Biomed, 2023, 236: 107558.
|
46. |
刘强, 曾勇明, 孙静坤, 等. 基于人工智能的CT肺结节检出影响因素分析: 体模研究. CT理论与应用研究, 2024, 33(4): 1-77.Liu Q, Zeng YM, Sun JK, et al. Analysis of influencing factors on pulmonary nodule detection by computed tomography with artificial intelligence: A phantom study. Computerized Tomography Theory and Applications, 2024, 33(4): 1-7.
|
47. |
Schwyzer M, Messerli M, Eberhard M, et al. Impact of dose reduction and iterative reconstruction algorithm on the detectability of pulmonary nodules by artificial intelligence. Diagn Interv Imaging, 2022, 103(5): 273-280.
|
48. |
X Zhu, L Zhu, D Song, et al. Comparison of single- and dual-energy CT combined with artificial intelligence for the diagnosis of pulmonary nodules. Clin Radiol, 2023, 78(2): e99-e105.
|
49. |
Zhang L, Shao Y, Chen G, et al. An artificial intelligence-assisted diagnostic system for the prediction of benignity and malignancy of pulmonary nodules and its practical value for patients with different clinical characteristics. Front Med (Lausanne), 2023, 10: 1286433.
|
50. |
杨倩, 陈长春, 刘玉林, 等. 肺部影像报告和数据系统2022版更新解读. 中华放射学杂志, 2023, 57(9): 948-954.Yang Q, Chen CC, Liu YL, et al. Interpretation of update of lung CT screening reporting and data system version 2022. Chin J Radiol, 2023, 57(9): 948-954.
|
51. |
吴久纯, 李甜, 李晓东, 等. 基于人工智能随访预测肺结节增长的影响因素研究. 中国全科医学, 2022, 17(25): 2115-2120.Wu JC, Li T, Li XD, et al. Inflencing factors for pulmonary nodular growth predicted by artificial intelligence-based follow-up. Chin Gen Pract, 2022, 17(25): 2115-2120.
|
52. |
吴阶平医学基金会模拟医学部胸外科专委会. 人工智能在肺结节诊治中的应用专家共识(2022年版). 中国肺癌杂志, 2022, 25(4): 219-225.Thoracic Surgery Committee, Department of Simulated Medicine, Wu Jieping Medical Foundation. Chinese experts consensus on artificial intelligence assisted management for pulmonary nodule (2022 version). Zhongguo Fei Ai Za Zhi, 2022, 25(4): 219-225.
|
53. |
黄文君, 李巧巧, 敬文斌, 等. 不同WHO肺癌病理分类下人工智能对肺结节良恶性的诊断效能. 临床放射学杂志, 2025, 44(1): 76-82.Huang WJ, Li QQ, Jing WB, et al. Diagnostic performance of artificial intelligence on benign and malignant pulmonary nodules under different WHO Pathological classifications of lung cancer. J Clin Radiol, 2025, 44(1): 76-82.
|
54. |
Yuan H, Fan Z, Wu Y, et al. An efficient multi-path 3D convolutional neural network for false-positive reduction of pulmonary nodule detection. Int J Comput Assist Radiol Surg, 2021, 16(12): 2269-2277.
|
55. |
Ardila D, Kiraly AP, Bharadwaj S, et al. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat Med, 2019, 25(6): 954-961.
|
56. |
Venkadesh KV, Aleef TA, Scholten ET, et al. Prior CT improves deep learning for malignancy risk estimation of screening-detected pulmonary nodules. Radiol, 2023, 308(2): e223308.
|
57. |
Wu R, Liang C, Zhang J, et al. Multi-kernel driven 3D convolutional neural network for automated detection of lung nodules in chest CT scans. Biomed Opt Express, 2024, 15(2): 1195-1218.
|
58. |
Chen Y, Hou X, Yang Y, et al. A novel deep learning model based on multi-scale and multi-view for detection of pulmonary nodules. J Digit Imaging, 2023, 36(2): 688-699.
|
59. |
Zhang X, Wu C, Zhang Y, et al. Knowledge-enhanced visual-language pre-training on chest radiology images. Nat Commun, 2023, 14(1): 4542.
|
60. |
Wang X, Gao M, Xie J, et al. Development, validation, and comparison of image-based, clinical feature-based and fusion artificial intelligence diagnostic models in differentiating benign and malignant pulmonary ground-glass nodules. Front Oncol, 2022 Jun 7: 12: 892890.
|
61. |
Gandhi Z, Gurram P, Amgai B, et al. Artificial intelligence and lung cancer: impact on improving patient outcomes. Cancers (Basel), 2023, 15(21): 5236.
|
62. |
Ding Y, Zhang J, Zhuang W, et al. Improving the efficiency of identifying malignant pulmonary nodules before surgery via a combination of artificial intelligence CT image recognition and serum autoantibodies. Eur Radiol, 2023, 33(5): 3092-3102.
|