1. |
Zhang Y, Wang H, Sang Y, et al. Gut microbiota in health and disease: Advances and future prospects. MedComm (2020), 2024, 5(12): e70012.
|
2. |
Kunath BJ, De Rudder C, Laczny CC, et al. The oral-gut microbiome axis in health and disease. Nat Rev Microbiol, 2024, 22(12): 791-805.
|
3. |
Chui ESH, Chan AKY, Ng ACK, et al. Mechanism and clinical implication of gut dysbiosis in degenerative abdominal aortic aneurysm: A systematic review. Asian J Surg, 2024, 47(12): 5088-5095.
|
4. |
Ling X, Jie W, Qin X, et al. Gut microbiome sheds light on the development and treatment of abdominal aortic aneurysm. Front Cardiovasc Med, 2022, 9: 1063683.
|
5. |
Shinohara R, Nakashima H, Emoto T, et al. Gut microbiota influence the development of abdominal aortic aneurysm by suppressing macrophage accumulation in mice. Hypertension, 2022, 79(12): 2821-2829.
|
6. |
Benson TW, Conrad KA, Li XS, et al. Gut microbiota-derived trimethylamine N-oxide contributes to abdominal aortic aneurysm through inflammatory and apoptotic mechanisms. Circulation, 2023, 147(14): 1079-1096.
|
7. |
Xiao J, Wei Z, Yang C, et al. The gut microbiota in experimental abdominal aortic aneurysm. Front Cardiovasc Med, 2023, 10: 1051648.
|
8. |
Liu S, Liu Y, Zhao J, et al. Effects of spermidine on gut microbiota modulation in experimental abdominal aortic aneurysm mice. Nutrients, 2022, 14(16): 3349.
|
9. |
Zhang K, Yang S, Huang Y et al. Alterations in gut microbiota and physiological factors associated with abdominal aortic aneurysm. Med Nov Technol Devices, 2022, 14: 100122.
|
10. |
Tian Z, Zhang Y, Zheng Z, et al. Gut microbiome dysbiosis contributes to abdominal aortic aneurysm by promoting neutrophil extracellular trap formation. Cell Host Microbe, 2022, 30(10): 1450-1463.
|
11. |
Ito E, Ohki T, Toya N, et al. Impact of Bifidobacterium adolescentis in patients with abdominal aortic aneurysm: A cross-sectional study. Biosci Microbiota Food Health, 2023, 42(1): 81-86.
|
12. |
Nakayama K, Furuyama T, Matsubara Y, et al. Gut dysbiosis and bacterial translocation in the aneurysmal wall and blood in patients with abdominal aortic aneurysm. PLoS One, 2022, 17(12): e0278995.
|
13. |
Nemes-Nikodém É, Gyurok GP, Dunai ZA, et al. Relationship between gut, blood, aneurysm wall and thrombus microbiome in abdominal aortic aneurysm patients. Int J Mol Sci, 2024, 25(16): 8844.
|
14. |
Xie J, Lu W, Zhong L, et al. Alterations in gut microbiota of abdominal aortic aneurysm mice. BMC Cardiovasc Disord, 2020, 20(1): 32.
|
15. |
He X, Bai Y, Zhou H, et al. Akkermansia muciniphila alters gut microbiota and immune system to improve cardiovascular diseases in murine model. Front Microbiol, 2022 Jun 14: 13: 906920.
|
16. |
Li C, Liu Z, Yang S, et al. Causal relationship between gut microbiota, plasma metabolites, inflammatory cytokines and abdominal aortic aneurysm: A Mendelian randomization study. Clin Exp Hypertens, 2024, 46(1): 2390419.
|
17. |
Qiu Y, Hou Y, Wei X, et al. Causal association between gut microbiomes and different types of aneurysms: A Mendelian randomization study. Front Microbiol, 2024, 15: 1267888.
|
18. |
Lv Y, Shen D, Zhang G, et al. Causal associations between the gut microbiome and aortic aneurysm: A Mendelian randomization study. Cardiovasc Innov Appl, 2024, 9(1): 956.
|
19. |
Zhou X, Ruan W, Wang T, et al. Exploring the impact of gut microbiota on abdominal aortic aneurysm risk through a bidirectional Mendelian randomization analysis. J Vasc Surg, 2024, 79(4): 763-775.
|
20. |
Jiang F, Cai M, Peng Y, et al. Changes in the gut microbiome of patients with type a aortic dissection. Front Microbiol, 2023, 14: 1092360.
|
21. |
Huang S, Gao S, Shao Y, et al. Gut microbial metabolite trimethylamine N-oxide induces aortic dissection. J Mol Cell Cardiol, 2024, 189: 25-37.
|
22. |
Yesitayi G, Wang Q, Wang M, et al. LPS-LBP complex induced endothelial cell pyroptosis in aortic dissection is associated with gut dysbiosis. Microbes Infect, 2024, 105406.
|
23. |
Sun Y, Dong H, Sun C, et al. Investigating the association between gut microbiome and aortic aneurysm diseases: A bidirectional two-sample Mendelian randomization analysis. Front Cell Infect Microbiol, 2024, 14: 1406845.
|
24. |
Li D, Li F, Jin J et al. Unraveling the causal nexus: Exploring the relationship between gut microbiota and aortic dissection. Res Square, 2023.
|
25. |
Manabe Y, Ishibashi T, Asano R, et al. Gut dysbiosis is associated with aortic aneurysm formation and progression in Takayasu arteritis. Arthritis Res Ther, 2023, 25(1): 46.
|
26. |
Witkowski M, Witkowski M, Friebel J, et al. Vascular endothelial tissue factor contributes to trimethylamine N-oxide-enhanced arterial thrombosis. Cardiovasc Res, 2022, 118(10): 2367-2384.
|
27. |
Wang Q, Yesitayi G, Liu B, et al. Targeting metabolism in aortic aneurysm and dissection: From basic research to clinical applications. Int J Biol Sci, 2023, 19(12): 3869-3891.
|
28. |
Salhi L, Rijkschroeff P, Van Hede D, et al. Blood biomarkers and serologic immunological profiles related to periodontitis in abdominal aortic aneurysm patients. front cell infect microbiol, 2022, 11: 766462.
|
29. |
Ramprasath T, Han YM, Zhang D, et al. Tryptophan catabolism and inflammation: A novel therapeutic target for aortic diseases. Front Immunol, 2021, 12: 731701.
|
30. |
Wang Q, Lv H, Ainiwan M, et al. Untargeted metabolomics identifies indole-3-propionic acid to relieve Ang Ⅱ-induced endothelial dysfunction in aortic dissection. Mol Cell Biochem, 2024, 479(7): 1767-1786.
|
31. |
Huang SS, Liu R, Chang S, et al. Gut microbiota-derived tryptophan metabolite indole-3-aldehyde ameliorates aortic dissection. Nutrients, 2023, 15(19): 4150.
|
32. |
den Besten G, van Eunen K, Groen AK, et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res, 2013, 54(9): 2325-2340.
|
33. |
Yang F, Xia N, Guo S, et al. Propionate alleviates abdominal aortic aneurysm by modulating colonic regulatory T-cell expansion and recirculation. JACC Basic Transl Sci, 2022, 7(9): 934-947.
|
34. |
Forte A, Grossi M, Bancone C, et al. Polyamine concentration is increased in thoracic ascending aorta of patients with bicuspid aortic valve. Heart Vessels, 2018, 33(3): 327-339.
|
35. |
Forte A, Balistreri CR, De Feo M, et al. Polyamines and microbiota in bicuspid and tricuspid aortic valve aortopathy. J Mol Cell Cardiol, 2019, 129: 179-187.
|