1. |
中国医药教育协会肺癌医学教育委员会, 中国胸外科肺癌联盟, 中国抗癌协会肿瘤消融治疗专业委员会, 等. 多发磨玻璃结节样肺癌多学科诊疗中国专家共识 (2024年版). 中华内科杂志, 2024, 63(2): 153-169.Chinese Medical Education Association Lung Cancer Medical Education Committee, China Lung Cancer Coalition in Thoracic Surgery, Chinese Anti-Cancer Association Tumor Ablation Therapy Professional Committee, et al. Chinese expert consensus on multidisciplinary diagnosis and treatment of multiple ground-glass nodular lung cancer (2024 version). Chin J Intern Med, 2024, 63(2): 153-169.
|
2. |
McWilliams A, Tammemagi MC, Mayo JR, et al. Probability of cancer in pulmonary nodules detected on first screening CT. N Engl J Med, 2013, 369(10): 910-919.
|
3. |
Guerrini S, Del Roscio D, Zanoni M, et al. Lung cancer imaging: Screening result and nodule management. Int J Environ Res Public Health, 2022, 19(4): 2460.
|
4. |
Wu Z, Wang F, Cao W, et al. Lung cancer risk prediction models based on pulmonary nodules: A systematic review. Thorac Cancer, 2022, 13(5): 664-677.
|
5. |
许万星, 王琳, 郭巧梅, 等. 多模态肺结节诊断模型的临床验证及应用价值探索. 上海交通大学学报(医学版), 2024, 44(8): 1030-1036.Xu WX, Wang L, Guo QM, et al. Clinical validation and application value exploration of multi-modal pulmonary nodule diagnosis model. J Shanghai Jiao Tong Univ (Med Sci), 2024, 44(8): 1030-1036.
|
6. |
National Lung Screening Trial Research Team; Aberle DR, Adams AM, Berg CD, et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med, 2011, 365(5): 395-409.
|
7. |
Visser O, van Leeuwen FE. Stage-specific survival of epithelial cancers in North-Holland/Flevoland, the Netherlands. Eur J Cancer. 2005, 41(15): 2321-2330.
|
8. |
李明珠, 陈启亮, 陈谦峰, 等. 基于证素辨证原理的微观指标中医辨证意义探究策略. 中华中医药杂志, 2021, 36(11): 6285-6288.Li MZ, Chen QL, Chen QF, et al. Exploration on the significance of TCM syndrome differentiation in micro index from syndrome elements differentiation principle. Chin J Trad Chin Med Pharm, 2021, 36(11): 6285-6288.
|
9. |
向红霞, 何佳玮, 谭施言, 等. 肺结节患者证素分布及与唾液菌群相关性研究. 中国胸心血管外科临床杂志, 1-12.4-10-21]. Xiang HX, He JW, Tan SY, et al. Study on the correlation between the distribution of Traditional Chinese Medicine syndrome elements and salivary microbiota in patients with pulmonary nodules. Chin J Clin Thorac Cardiovasc Surg, 1-12 [2024-10-21].
|
10. |
Zhang J, Wu Y, Liu J, et al. Differential oral microbial input determines two microbiota pneumo-types associated with health status. Adv Sci (Weinh), 2022, 9(32): e2203115.
|
11. |
Li R, Li J, Zhou X. Lung microbiome: new insights into the pathogenesis of respiratory diseases. Signal Transduct Target Ther, 2024, 9(1): 19.
|
12. |
Ren YF, Ma Q, Zeng X, et al. Saliva-microbiome-derived signatures: Expected to become a potential biomarker for pulmonary nodules (MCEPN-1). BMC Microbiol, 2024, 24(1): 132.
|
13. |
任益锋, 马琼, 李芳, 等. 肺结节患者唾液微生物菌群特征分析: 一项前瞻性、非随机、同期对照试验. 四川大学学报(医学版), 2023, 54(6): 1208-1218.Ren YF, Ma Q, Li F, et al. Analysis of salivary microbiota characteristics in patients with pulmonary nodules: A prospective nonrandomized concurrent controlled trial. J Sichuan Univ (Med Sci), 2023, 54(6): 1208-1218.
|
14. |
Ma ZS. Heterogeneity-disease relationship in the human microbiome-associated diseases. FEMS Microbiol Ecol, 2020, 96(7): fiaa093.
|
15. |
肖冲, 黄文博, 李雪珂, 等. 基于临界慢化原理探讨肺“结-癌转化”的“未-已病”表征体系. 世界中医药, 1-7.4-10-21]. Xiao C, Huang WB, Li XK, et al. Exploring the "pre-post disease" characterization system for the lung "nodules-cancer transformation" based on the principle of critical slowing down. World Chin Med, 1-7 [2024-10-21].
|
16. |
中华医学会呼吸病学分会, 中国肺癌防治联盟专家组. 肺结节诊治中国专家共识(2024年版). 中华结核和呼吸杂志, 2024, 47(8): 716-729.Chinese Society of Respiratory Diseases, Expert Group of China Lung Cancer Prevention and Treatment Alliance. Chinese expert consensus on diagnosis and treatment of pulmonary nodules (2024). Chin J Tubercul Resp Dis, 2024, 47(8): 716-729.
|
17. |
杨国旺, 张兴涵, 张怀锐, 等. 肺结节中西医结合全程管理专家共识. 中国实验方剂学杂志, 2024, 30(1): 149-159.Yang GW, Zhang XH, Zhang HR, et al. Expert consensus on whole-process management of pulmonary nodules with integrated traditional Chinese and western medicine. Chin J Exper Trad Med Form, 2024, 30(1): 149-159.
|
18. |
朱文锋, 主编. 证素辨证学. 人民卫生出版社, 2008.1-37.Zhu WF, chief editor. Syndrome Element Differentiation. People's Medical Publishing House, 2008. 1-37.
|
19. |
陈美池, 姜朋媛, 褚雪镭, 等. 242例肺结节患者中医证素特征分析. 辽宁中医杂志, 1-13.5-01-03]. Chen MC, Jiang PY, Chu XL, et al. Analysis of TCM syndrome elements in 242 patients with pulmonary nodules. Liaoning J Trad Chin Med, 1-13[2025-01-03].
|
20. |
谭施言, 曾琼, 向红霞, 等. 电子鼻联合机器学习对肺结节良恶性及中医证素呼气图谱辨识的单中心观察性研究. 中国胸心血管外科临床杂志, 2025, 32(2).Tan SY, Zeng Q, Xiang HX, et al. Recognition of breath odor map of benign and malignant pulmonary nodules and Traditional Chinese Medicine syndrome elements based on electronic nose combined with machine learning: An observational study in a single center. Chin J Clin Thorac Cardiovasc Surg, 2025, 32(2).
|
21. |
Riley RD, Ensor J, Snell KIE, et al. Calculating the sample size required for developing a clinical prediction model. BMJ, 2020, 368: m441.
|
22. |
Sathyanarayanan A, Gupta R, Thompson EW, et al. A comparative study of multi-omics integration tools for cancer driver gene identification and tumour subtyping. Brief Bioinform, 2020, 21(6): 1920-1936.
|
23. |
Heo YJ, Hwa C, Lee GH, et al. Integrative multi-omics approaches in cancer research: from biological networks to clinical subtypes. Mol Cells, 2021, 44(7): 433-443.
|
24. |
Zhang J, Zhang J, Yuan C, et al. Establishment of the prognostic index reflecting tumor immune microenvironment of lung adenocarcinoma based on metabolism-related genes. J Cancer, 2020, 11(24): 7101.
|
25. |
Avanzo M, Stancanello J, Pirrone G, et al. Radiomics and deep learning in lung cancer. Strahlenther Onkol, 2020, 196(10): 879-887.
|
26. |
Chen K, Bai J, Reuben A, et al. Multiomics analysis reveals distinct immunogenomic features of lung cancer with ground-glass opacity. Am J Respir Crit Care Med, 2021, 204(10): 1180-1192.
|
27. |
Poirion O B, Jing Z, Chaudhary K, et al. DeepProg: An ensemble of deep-learning and machine-learning models for prognosis prediction using multi-omics data. Genome Med, 2021, 13(1): 112.
|
28. |
Sammut S J, Crispin-Ortuzar M, Chin S F, et al. Multi-omic machine learning predictor of breast cancer therapy response. Nature, 2022, 601(7894): 623-629.
|
29. |
Sudhakar M, Rengaswamy R, Raman K. Multi-omic data improve prediction of personalized tumor suppressors and oncogenes. Front Genet, 2022, 13: 854190.
|
30. |
Chai H, Zhou X, Zhang Z, et al. Integrating multi-omics data through deep learning for accurate cancer prognosis prediction. Comput Biol Med, 2021, 134: 104481.
|
31. |
王佩瑾, 闫志远, 容雪娥, 等. 数据受限条件下的多模态处理技术综述. 中国图象图形学报, 2022, 27(10): 2803-2834.Wang PJ, Yan ZY, Rong XE, et al. Review of multimodal data processing techniques with limited data. J Image Graph, 2022, 27(10): 2803-2834.
|
32. |
Kopf A, Fortuin V, Somnath VR, et al. Mixture-of-experts variational autoencoder for clustering and generating from similarity-based representations on single cell data. PLoS Comput Biol, 2021, 17(6): e1009086.
|
33. |
Cheng J, Gao M, Liu J, et al. Multimodal disentangled variational autoencoder with game theoretic interpretability for glioma grading. IEEE J Biomed Health Inform, 2022, 26(2): 673-684.
|