1. |
Luo CC, Zhong YL, Qiao ZY, et al. Development and validation of a nomogram for postoperative severe acute kidney injury in acute type A aortic dissection. J Geriatr Cardiol, 2022, 19(10): 734-742.
|
2. |
Marco PS, Nakazone MA, Maia LN, et al. Cardiac surgery-associated acute kidney injury in patients with preserved baseline renal function. Braz J Cardiovasc Surg, 2022, 37(5): 613-621.
|
3. |
庞智强, 蔡雪玲. 中国式农业农村现代化统计监测研究. 统计与信息论坛, 2025, 40(2): 50-64.
|
4. |
樊淼, 郭乾乾, 李之淳, 等. 中国西部市级政府医疗卫生支出效率分析. 中国卫生事业管理, 2023, 40(5): 361-365.
|
5. |
Gao N, Wang M, Jiang L, et al. A multicenter clinical study of critically ill patients with sepsis complicated with acute kidney injury in Beijing: Incidence, clinical characteristics and outcomes. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue, 2024, 36(6): 567-573.
|
6. |
Patel P, Gupta S, Patel H, et al. Assessment of APACHEⅡ score to predict ICU outcomes of patients with AKI: A single-center experience from Haryana, North India. Indian J Crit Care Med, 2022, 26(3): 276-281.
|
7. |
Cole VT, Hussong AM, Gottfredson NC, et al. Informing harmonization decisions in integrative data analysis: Exploring the measurement multiverse. Prev Sci, 2023, 24(8): 1595-1607.
|
8. |
Ljubic, B, Pavlovski M, Gillespie A, et al. Systematic review of supervised machine learning models in prediction of medical conditions, medRxiv, 2022.
|
9. |
Shamout F, Zhu T, Clifton DA. Machine learning for clinical outcome prediction. IEEE Rev Biomed Eng, 2021, 14: 116-126.
|
10. |
罗枭. 可解释机器学习研究及其在临床预后预测中的应用. 中国人民解放军海军军医大学, 2024.
|
11. |
Yap M, Johnston RL, Foley H, et al. Verifying explainability of a deep learning tissue classifier trained on RNA-seq data. Sci Rep, 2021, 11(1): 2641.
|
12. |
Wang D, Huang X, Wang H, et al. Risk factors for postoperative pneumonia after cardiac surgery: A prediction model. J Thorac Dis, 2021, 13(4): 2351-2362.
|
13. |
李建华, 朱泽阳, 徐礼胜, 等. 基于深度嵌入聚类的ICU患者生理数据缺失插补. 东北大学学报 (自然科学版), 2022, 43(5): 639-645.
|
14. |
Guan C, Gong A, Zhao Y, et al. Interpretable machine learning model for new-onset atrial fibrillation prediction in critically ill patients: A multi-center study. Crit Care, 2024, 28(1): 349.
|
15. |
Chen X, Pan J, Li Y, et al. Application of machine learning model in predicting the likelihood of blood transfusion after hip fracture surgery. Aging Clin Exp Res, 2023, 35(11): 2643-2656.
|
16. |
Abioye, OA, Thomas S, Odimba C, et al. Generic hybrid model for breast cancer mammography image classification using EfficientNetB2. Dutse J Pure Appl Sci, 2023, 9(3b): 281-289.
|
17. |
Dadashzadeh ER, Bou-Samra P, Huckaby LV, et al. Leveraging decision curve analysis to improve clinical application of surgical risk calculators. J Surg Res, 2021, 261: 58-66.
|
18. |
Zhang X, Wen T, Fan J, et al. Short-term outcomes and risk factors for mortality in neonatal cardiac surgeries with cardiopulmonary bypass: A 5-year single-center report. World J Pediatr Surg, 2025, 8(Suppl 1): e000968.
|
19. |
Yan W, Wang T, Wang J, et al. Effects of pulsatile flow on postoperative recovery in adult cardiac surgery with cardiopulmonary bypass: A systematic review and meta-analysis of randomized controlled trials. Heliyon, 2025, 11(1): e41630.
|
20. |
Thongsuk Y, Hwang NC. Perioperative glycemic management in cardiac surgery: A narrative review. J Cardiothorac Vasc Anesth, 2024, 38(1): 248-267.
|
21. |
乔梦圆, 秦梦真, 王海燕. ICU应激性高血糖患者危险因素模式的潜在类别及与预后的关系. 护理学杂志, 2023, 38(18): 33-37.
|
22. |
Lin YJ, Lin LY, Peng YC, et al. Association between glucose variability and postoperative delirium in acute aortic dissection patients: An observational study. J Cardiothorac Surg, 2021, 16(1): 82.
|
23. |
Choi H, Park CS, Huh J, et al. Intraoperative glycemic variability and mean glucose are predictors for postoperative delirium after cardiac surgery: A retrospective cohort study. Clin Interv Aging, 2022, 17: 79-95.
|
24. |
Corazzari C, Matteucci M, Kołodziejczak M, et al. Impact of preoperative glycometabolic status on outcomes in cardiac surgery: Systematic review and meta-analysis. J Thorac Cardiovasc Surg, 2022, 164(6): 1950-1960.
|
25. |
Piccolo R, Leone A, Avvedimento M, et al. Impact of biomarker type on periprocedural myocardial infarction in patients undergoing elective PCI. Eur Heart J Qual Care Clin Outcomes, 2023, 9(7): 680-690.
|
26. |
Dey S, Kashav R, Kohli JK, et al. Systemic immune-inflammation index predicts poor outcome after elective off-pump CABG: A retrospective, single-center study. J Cardiothorac Vasc Anesth, 2021, 35(8): 2397-2404.
|
27. |
Perry LA, Liu Z, Loth J, et al. Perioperative neutrophil-lymphocyte ratio predicts mortality after cardiac surgery: Systematic review and meta-analysis. J Cardiothorac Vasc Anesth, 2022, 36(5): 1296-1303.
|
28. |
焦莉莉, 周金锋. 老年冠心病患者衰弱的危险因素与全身性炎症反应指数的相关性分析. 中国循证心血管医学杂志, 2023, 15(12): 1330-1333.
|
29. |
周岩, 兰超, 雷如意, 等. CAR联合心肺复苏持续时间对心脏骤停患者预后的预测价值. 中华急诊医学杂志, 2024, 33(7): 955-962.
|
30. |
Penny-Dimri JC, Bergmeir C, Perry L, et al. Machine learning to predict adverse outcomes after cardiac surgery: A systematic review and meta-analysis. J Card Surg, 2022, 37(11): 3838-3845.
|
31. |
Tseng PY, Chen YT, Wang CH, et al. Prediction of the development of acute kidney injury following cardiac surgery by machine learning. Crit Care, 2020, 24(1): 478.
|
32. |
Xiong W, Zhang L, She K, et al. Comparison of machine learning and Logistic regression model in predicting acute kidney injury after cardiac surgery: data analysis based on MIMIC-Ⅲ database. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue, 2022, 34(11): 1188-1193.
|