1. |
Siegel RL, Miller KD, Wagle NS, et al. Cancer statistics, 2023. CA Cancer J Clin, 2023, 73(1): 17-48.
|
2. |
Herbst RS, Morgensztern D, Boshoff C. The biology and management of non-small cell lung cancer. Nature, 2018, 553(7689): 446-454.
|
3. |
Nicholson AG, Tsao MS, Beasley MB, et al. The 2021 WHO classification of lung tumors: impact of advances since 2015. J Thorac Oncol, 2022, 17(3): 362-387.
|
4. |
Moreira AL, Ocampo PSS, Xia Y, et al. A grading system for invasive pulmonary adenocarcinoma: a proposal from the International Association for the Study of Lung Cancer Pathology Committee. J Thorac Oncol, 2020, 15(10): 1599-1610.
|
5. |
Zhang Y, Ma X, Shen X, et al. Surgery for pre- and minimally invasive lung adenocarcinoma. J Thorac Cardiovasc Surg, 2022, 163(2): 456-464.
|
6. |
Saji H, Okada M, Tsuboi M, et al. Segmentectomy versus lobectomy in small-sized peripheral non-small-cell lung cancer (JCOG0802/WJOG4607L): a multicentre, open-label, phase 3, randomised, controlled, non-inferiority trial. Lancet, 2022, 399(10335): 1607-1617.
|
7. |
Hung JJ, Yeh YC, Jeng WJ, et al. Predictive value of the international association for the study of lung cancer/American Thoracic Society/European Respiratory Society classification of lung adenocarcinoma in tumor recurrence and patient survival. J Clin Oncol, 2014, 32(22): 2357-2364.
|
8. |
Aberle DR, Adams AM, Berg CD, et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med, 2011, 365(5): 395-409.
|
9. |
Ettinger DS, Wood DE, Aisner DL, et al. NCCN guidelines insights: non-small cell lung cancer, version 2. 2023. J Natl Compr Canc Netw, 2023, 21(4): 340-350.
|
10. |
梁云, 谢宁, 刁晶艳, 等. 人工智能量化参数预测肺结节浸润程度的临床价值. 中国胸心血管外科临床杂志, 2022, 29(7): 878-885.Liang Y, Xie N, Diao JY, et al. Value of artificial intelligence quantitative parameters in predicting the infiltration of pulmonary nodules. Chin J Clin Thorac Cardiovasc Surg, 2022, 29(7): 878-885.
|
11. |
Wang Memoli JS, Nietert PJ, Silvestri GA. Meta-analysis of guided bronchoscopy for the evaluation of the pulmonary nodule. Chest, 2012, 142(2): 385-393.
|
12. |
Li Y, Yang CF, Peng J, et al. Small (≤20 mm) ground-glass opacity pulmonary lesions: which factors influence the diagnostic accuracy of CT-guided percutaneous core needle biopsy? BMC Pulm Med, 2022, 22(1): 265.
|
13. |
Walts AE, Marchevsky AM. Root cause analysis of problems in the frozen section diagnosis of in situ, minimally invasive, and invasive adenocarcinoma of the lung. Arch Pathol Lab Med, 2012, 136(12): 1515-1521.
|
14. |
Yeh YC, Nitadori J, Kadota K, et al. Using frozen section to identify histological patterns in stageⅠlung adenocarcinoma of ≤3 cm: accuracy and interobserver agreement. Histopathology, 2015, 66(7): 922-938.
|
15. |
马钰杰, 游雨禾, 朴哲, 等. 人工智能在肺结节预测模型中应用的研究现状. 中华胸部外科电子杂志, 2025, 12(1): 39-48.Ma YJ, You YH, Piao Z, et al. Current status of research on the application of artificial intelligence in lung nodule prediction modeling. Chin J Thorac Surg (Electron Ed), 2025, 12(1): 39-48.
|
16. |
Eguchi T, Kameda K, Lu S, et al. Lobectomy is associated with better outcomes than sublobar resection in spread through air spaces (STAS)-positive T1 lung adenocarcinoma: a propensity score-matched analysis. J Thorac Oncol, 2019, 14(1): 87-98.
|
17. |
Liu W, Chen C, Zhang Q, et al. Histopathologic pattern and molecular risk stratification are associated with prognosis in patients with stage ⅠB lung adenocarcinoma. Transl Lung Cancer Res, 2024, 13(9): 2424-2434.
|
18. |
Chan EG, Chan PG, Mazur SN, et al. Outcomes with segmentectomy versus lobectomy in patients with clinical T1cN0M0 non-small cell lung cancer. J Thorac Cardiovasc Surg, 2021, 161(5): 1639-1648.
|
19. |
Bankier AA, MacMahon H, Colby T, et al. Fleischner Society: glossary of terms for thoracic imaging. Radiology, 2024, 310(2): e232558.
|
20. |
Li M, Zhu L, Lv Y, et al. Thin-slice computed tomography enables to classify pulmonary subsolid nodules into pre-invasive lesion/minimally invasive adenocarcinoma and invasive adenocarcinoma: a retrospective study. Sci Rep, 2023, 13(1): 6999.
|
21. |
Hu X, Yang L, Kang T, et al. Estimation of pathological subtypes in subsolid lung nodules using artificial intelligence. Heliyon, 2024, 10(15): e34863.
|
22. |
Mao R, She Y, Zhu E, et al. A proposal for restaging of invasive lung adenocarcinoma manifesting as pure ground glass opacity. Ann Thorac Surg, 2019, 107(5): 1523-1531.
|
23. |
Detterbeck FC, Boffa DJ, Kim AW, et al. The eighth edition lung cancer stage classification. Chest, 2017, 151(1): 193-203.
|
24. |
Hattori A, Suzuki K, Takamochi K, et al. Prognostic impact of a ground-glass opacity component in clinical stage ⅠA non-small cell lung cancer. J Thorac Cardiovasc Surg, 2021, 161(4): 1469-1480.
|
25. |
Heidinger BH, Anderson KR, Nemec U, et al. Lung adenocarcinoma manifesting as pure ground-glass nodules: correlating CT size, volume, density, and roundness with histopathologic invasion and size. J Thorac Oncol, 2017, 12(8): 1288-1298.
|
26. |
Dong H, Yin LK, Qiu YG, et al. Prediction of high-grade patterns of stage ⅠA lung invasive adenocarcinoma based on high-resolution CT features: a bicentric study. Eur Radiol, 2023, 33(6): 3931-3940.
|
27. |
Ding H, Shi J, Zhou X, et al. Value of CT characteristics in predicting invasiveness of adenocarcinoma presented as pulmonary ground-glass nodules. Thorac Cardiovasc Surg, 2017, 65(2): 136-141.
|
28. |
万光艺, 孔杰俊, 张璐. 基于CT影像学特征的肺腺癌组织分化程度分析及患者预后预测价值. 肿瘤影像学, 2024, 33(4): 388-394.Wan GY, Kong JJ, Zhang L, et al. The degree of tissue differentiation and prognostic significance of lung adenocarcinoma based on CT imaging features. Oncoradiology, 2024, 33(4): 388-394.
|
29. |
Wang H, Weng Q, Hui J, et al. Value of TSCT features for differentiating preinvasive and minimally invasive adenocarcinoma from invasive adenocarcinoma presenting as subsolid nodules smaller than 3 cm. Acad Radiol, 2020, 27(3): 395-403.
|
30. |
刘江江, 于晓军, 黄海涛, 等. 表现为周围型肺磨玻璃结节的浸润性腺癌影像学高危因素分析. 中国胸心血管外科临床杂志, 2024, 31(1): 85-91.Liu JJ, Yu XJ, Huang HT, et al. High-risk factors in images of infiltrating lung adenocarcinoma manifesting as peripheral ground-glass nodules. Chin J Clin Thorac Cardiovasc Surg, 2024, 31(1): 85-91.
|
31. |
顾鑫蕾, 刘展, 邵为朋, 等. 肺结节CT特征对腺癌病理亚型的预测价值. 中国胸心血管外科临床杂志, 2022, 29(6): 684-692.Gu XL, Liu Z, Shao WP, et al. CT features of pulmonary nodules predictive value of histological subtypes of adenocarcinoma. Chin J Clin Thorac Cardiovasc Surg, 2022, 29(6): 684-692.
|
32. |
王璐, 刘杰克, 徐富阳, 等. 基于低剂量CT定量-定性特征预测低分化浸润性非黏液肺腺癌. 临床放射学杂志, 2023, 42(12): 1887-1894.Wang L, Liu JK, Xu FY, et al. Quantitative-semantic features of low-dose CT for predicting the poorly differentiated invasive non-mucinous pulmonary adenocarcinoma. J Clin Radiol, 2023, 42(12): 1887-1894.
|
33. |
Saji H, Okada M, Tsuboi M, et al. Segmentectomy versus lobectomy in small-sized peripheral non-small-cell lung cancer (JCOG0802/WJOG4607L): a multicentre, open-label, phase 3, randomised, controlled, non-inferiority trial. Lancet, 2022, 399(10335): 1607-1617.
|
34. |
Nakagawa K, Watanabe SI, Kunitoh H, et al. The Lung Cancer Surgical Study Group of the Japan Clinical Oncology Group: past activities, current status and future direction. Jpn J Clin Oncol, 2017, 47(3): 194-199.
|
35. |
张潇文, 赵紫维, 刘经纬, 等. 混合磨玻璃结节的CT征象对肺腺癌病理亚型及分化程度的预测价值. 中国胸心血管外科临床杂志, 2023, 30(2): 191-197.Zhang XW, Zhao ZW, Liu JW, et al. The predictive value of CT signs of mixed ground-glass nodules in pathological subtypes and differentiation of lung adenocarcinoma. Chin J Clin Thorac Cardiovasc Surg, 2023, 30(2): 191-197.
|
36. |
Chen J, Zeng X, Li F, et al. Study on the value of 3D visualization in differentiating IA and non-IA pulmonary ground-glass nodules. Clin Radiol, 2024, 79(12): e1433-e1442.
|
37. |
中华医学会呼吸病学分会, 中国肺癌防治联盟专家组. 肺结节诊治中国专家共识(2024年版). 中华结核和呼吸杂志, 2024, 47(8): 716-729.Chinese Thoracic Society, Chinese Medical Association, Chinese Alliance Against Lung Cancer Expert Group. Chinese expert consensus on diagnosis and treatment of pulmonary nodules (2024). Chin J Tuberc Respir Dis, 2024, 47(8): 716-729.
|
38. |
梁云, 任蒙蒙, 黄德龙, 等. 人工智能量化参数鉴别Ⅰ期浸润性肺腺癌病理分级的临床价值. 中国胸心血管外科临床杂志, 2025, 32(4): 1-12.Liang Y, Ren MM, Huang DL, et al. The clinical value of artificial intelligence quantitative parameters in distinguishing pathological grades of stageⅠ invasive pulmonary adenocarcinoma. Chin J Clin Thorac Cardiovasc Surg, 2025, 32(4): 1-12.
|