• 1. Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Guangzhou, 510080, P. R. China;
  • 2. Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou, 510080, P. R. China;
  • 3. Department of Cardiac Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, P. R. China;
WEN Shusheng, Email: wenshusheng@gdph.org.cn
Export PDF Favorites Scan Get Citation

Objective  To evaluate the impact of an integrated management mode of prenatal diagnosis-postnatal treatment for congenital heart disease (CHD) on perioperative and long-term outcomes of the arterial switch operation (ASO), and to analyze the efficacy of ASO over six years in a single center. Methods  This retrospective study analyzed the clinical data of 183 children who underwent ASO at Guangdong Provincial People's Hospital from January 2018 to December 2024. The cohort included 106 patients (57.9%) of transposition of the great arteries with intact ventricular septum (TGA/IVS), 61 patients (33.3%) of transposition of the great arteries with ventricular septal defect (TGA/VSD), and 16 patients (8.7%) of taussig-bing anomaly (TBA). Perioperative indicators were compared between 91 patients in the prenatal-postnatal integrated management group (an integrated group) and 92 patients in the traditional management group (a non-integrated group). Long-term survival and reoperation rates were analyzed using Kaplan-Meier curves. Results  The overall perioperative mortality rate was 4.9% (9/183), showing a downward trend year by year. The primary cause of perioperative mortality was low cardiac output syndrome (LCOS), which occurred in 12 patients (6.6% incidence) with a mortality rate of 75%. The integrated group had a higher proportion of males (89% vs. 72.8%, P<0.05) and lower body weight [3.13 (2.75, 3.35) vs. 3.30 (3.00, 3.67), P<0.05] compared to the non-integrated group. The age at surgery was significantly earlier in the integrated group [7 (3, 10) vs. 14 (9, 48), P<0.05], and all children in the Integrated Group underwent ASO within the optimal surgical window (100% vs. 82.6%, P<0.05). Intraoperatively, cardiopulmonary bypass (CPB) time [173 (150, 207) vs. 186 (159, 237), P<0.05] and aortic cross-clamp (ACC) time [100 (90, 117) vs. 116 (97, 142), P<0.05] were significantly shorter in the integrated group. although the integrated group had longer postoperative mechanical ventilation time [145 (98, 214) vs. 116 (77, 147), P<0.05] and higher 48-hour maximum vasoactive inotropic score (VISmax) [15 (10, 21) vs. 12 (8, 16), P<0.05], there was no statistically significant difference in the incidence of severe complications (LCOS, NEC, ECMO) or mortality rate (3.3% vs. 6.5%, P=0.51) between the two groups, despite earlier surgical intervention and a higher proportion of critically ill cases in the integrated group. The length of hospital stay in the emergency surgery group was significantly shorter than that in the elective surgery group [20 (15, 28) vs. 25 (21, 30), P<0.05], suggesting that early surgery may be of potential benefit. A total of 163 patients were successfully followed up for a median of 4.7 years, with a 5-year survival rate of 95.1% and a freedom from reintervention survival rate of 95.1%. There were no late deaths, and the most common postoperative complication was pulmonary artery stenosis. Conclusion  The integrated management model allowed critically ill children with lower body weights to safely undergo surgery, significantly optimizing the timing of surgery and shortening intraoperative times. The long-term risk of reoperation after ASO is primarily concentrated on pulmonary artery stenosis, necessitating long-term follow-up and monitoring.

Copyright © the editorial department of Chinese Journal of Clinical Thoracic and Cardiovascular Surgery of West China Medical Publisher. All rights reserved