1. |
吴俊翰, 庄伟涛, 许海杰, 等. 肺结节患者焦虑、抑郁情绪及其影响因素的横断面研究. 中国胸心血管外科临床杂志, 2023, 30(3): 357-363.Wu JH, Zhuang WT, Xu HJ, et al. Anxiety and depression in patients with pulmonary nodules and its related influencing factors: a cross-sectional study. Chin J Clin Thorac Cardiovasc Surg, 2023, 30(3): 357-363.
|
2. |
Cellina M, Cacioppa LM, Cè M, et al. Artificial intelligence in lung cancer screening: the future is now. Cancers (Basel), 2023, 15(17): 4557.
|
3. |
吴阶平医学基金会模拟医学部胸外科专委会. 人工智能在肺结节诊治中的应用专家共识(2022年版). 中国肺癌杂志, 2022, 25(4): 219-225.Thoracic Surgery Committee, Department of Simulated Medicine, Wu Jieping Medical Foundation. Chinese experts consensus on artificial intelligence assisted management for pulmonary nodule (2022 version). Chin J Lung Cancer, 2022, 25(4): 219-225.
|
4. |
Nam JG, Hwang EJ, Kim J, et al. AI improves nodule detection on chest radiographs in a health screening population: a randomized controlled trial. Radiology, 2023, 307(2): e221894.
|
5. |
Kim JY, Ryu WS, Kim D, et al. Better performance of deep learning pulmonary nodule detection using chest radiography with pixel level labels in reference to computed tomography: data quality matters. Sci Rep, 2024, 14(1): 15967.
|
6. |
Tang YX, Tang YB, Peng Y, et al. Automated abnormality classification of chest radiographs using deep convolutional neural networks. NPJ Digit Med, 2020, 3: 70.
|
7. |
Nam JG, Park S, Hwang EJ, et al. Development and validation of deep learning-based automatic detection algorithm for malignant pulmonary nodules on chest radiographs. Radiology, 2019, 290(1): 218-228.
|
8. |
Hwang SH, Shin HJ, Kim EK, et al. Clinical outcomes and actual consequence of lung nodules incidentally detected on chest radiographs by artificial intelligence. Sci Rep, 2023, 13(1): 19732.
|
9. |
Ueda D, Matsumoto T, Yamamoto A, et al. A deep learning-based model to estimate pulmonary function from chest x-rays: multi-institutional model development and validation study in Japan. Lancet Digit Health, 2024, 6(8): e580-e588.
|
10. |
Singla S, Eslami M, Pollack B, et al. Explaining the black-box smoothly-a counterfactual approach. Med Image Anal, 2023, 84: 102721.
|
11. |
Singh R, Kalra MK, Homayounieh F, et al. Artificial intelligence-based vessel suppression for detection of sub-solid nodules in lung cancer screening computed tomography. Quant Imaging Med Surg, 2021, 11(4): 1134-1143.
|
12. |
Wang J, Zhu Z, Pan Z, et al. Deep learning reconstruction improves computer-aided pulmonary nodule detection and measurement accuracy for ultra-low-dose chest CT. BMC Med Imaging, 2025, 25(1): 200.
|
13. |
Jiang B, Li N, Shi X, et al. Deep learning reconstruction shows better lung nodule detection for ultra-low-dose chest CT. Radiology, 2022, 303(1): 202-212.
|
14. |
Yu P, Zhang H, Wang D, et al. Spatial resolution enhancement using deep learning improves chest disease diagnosis based on thick slice CT. NPJ Digit Med, 2024, 7(1): 335.
|
15. |
Mao Y, Xu N, Wu Y, et al. Assessments of lung nodules by an artificial intelligence chatbot using longitudinal CT images. Cell Rep Med, 2025, 6(3): 101988.
|
16. |
Fang J, Wang J, Li A, et al. Siamese encoder-based spatial-temporal mixer for growth trend prediction of lung nodules on CT scans. Int Conf Med Image Comput Comput Assist Interv, 2022: 484-494.
|
17. |
Li Y, Yang J, Xu Y, et al. Learning tumor growth via follow-up volume prediction for lung nodules. Int Conf Med Image Comput Comput Assist Interv, 2020: 508-517.
|
18. |
Takeshita Y, Onozawa S, Katase S, et al. Evaluation of an artificial intelligence U-net algorithm for pulmonary nodule tracking on chest computed tomography images. J Int Med Res, 2024, 52(2): 3000605241230033.
|
19. |
Ardila D, Kiraly AP, Bharadwaj S, et al. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat Med, 2019, 25(6): 954-961.
|
20. |
Wang C, Shao J, He Y, et al. Data-driven risk stratification and precision management of pulmonary nodules detected on chest computed tomography. Nat Med, 2024, 30(11): 3184-3195.
|
21. |
Pan Z, Hu G, Zhu Z, et al. Predicting invasiveness of lung adenocarcinoma at chest CT with deep learning ternary classification models. Radiology, 2024, 311(1): e232057.
|
22. |
Zhong Y, She Y, Deng J, et al. Deep learning for prediction of N2 metastasis and survival for clinical stage I non-small cell lung cancer. Radiology, 2022, 302(1): 200-211.
|
23. |
Li HJ, Qiu ZB, Wang MM, et al. Radiomics-based support vector machine distinguishes molecular events driving the progression of lung adenocarcinoma. J Thorac Oncol, 2025, 20(1): 52-64.
|
24. |
He J, Wang B, Tao J, et al. Accurate classification of pulmonary nodules by a combined model of clinical, imaging, and cell-free DNA methylation biomarkers: a model development and external validation study. Lancet Digit Health, 2023, 5(10): e647-e656.
|
25. |
Lastwika KJ, Wu W, Zhang Y, et al. Multi-omic biomarkers improve indeterminate pulmonary nodule malignancy risk assessment. Cancers (Basel), 2023, 15(13): 3345.
|
26. |
Peng M. Classification of pulmonary nodules in the era of precision medicine. Lancet Digit Health, 2023, 5(10): e633-e634.
|
27. |
He W, Huang W, Zhang L, et al. Radiogenomics: bridging the gap between imaging and genomics for precision oncology. MedComm (2020), 2024, 5(9): e722.
|
28. |
Zhu E, Muneer A, Zhang J, et al. Progress and challenges of artificial intelligence in lung cancer clinical translation. NPJ Precis Oncol, 2025, 9(1): 210.
|
29. |
Baldwin DR, Gustafson J, Pickup L, et al. External validation of a convolutional neural network artificial intelligence tool to predict malignancy in pulmonary nodules. Thorax, 2020, 75(4): 306-312.
|
30. |
Venkadesh KV, Setio AAA, Schreuder A, et al. Deep learning for malignancy risk estimation of pulmonary nodules detected at low-dose screening CT. Radiology, 2021, 300(2): 438-447.
|
31. |
Wang C, Shao J, Xu X, et al. DeepLN: a multi-task AI tool to predict the imaging characteristics, malignancy and pathological subtypes in CT-detected pulmonary nodules. Front Oncol, 2022, 12: 683792.
|
32. |
王蕾, 向之明. 人工智能联合三维重建在胸腔镜肺结节切除术中的应用进展. 中国胸心血管外科临床杂志, 2025, 32(2): 252-257.Wang L, Xiang ZM. Advances in the application of AI-assisted three-dimensional reconstruction in thoracoscopic pulmonary nodule resection surgery. Chin J Clin Thorac Cardiovasc Surg, 2025, 32(2): 252-257.
|
33. |
Das N, Happaerts S, Gyselinck I, et al. Collaboration between explainable artificial intelligence and pulmonologists improves the accuracy of pulmonary function test interpretation. Eur Respir J, 2023, 61(5): 2201948.
|
34. |
Chan EG, Landreneau JR, Schuchert MJ, et al. Preoperative (3-dimensional) computed tomography lung reconstruction before anatomic segmentectomy or lobectomy for stage I non-small cell lung cancer. J Thorac Cardiovasc Surg, 2015, 150(3): 523-528.
|
35. |
钟文昭, 杨帆, 胡坚, 等. 肺部流域地形图2. 0原理、技术规范及临床应用胸外科专家共识(2024版). 中国胸心血管外科临床杂志, 2025, 32(2): 141-152.Zhong WZ, Yang F, Hu J, et al. Principles, technical specifications, and clinical application of lung watershed topography map 2. 0: a thoracic surgery expert consensus (2024 version). Chin J Clin Thorac Cardiovasc Surg, 2025, 32(2): 141-152.
|
36. |
Kadomatsu Y, Nakao M, Ueno H, et al. A novel system applying artificial intelligence in the identification of air leak sites. JTCVS Tech, 2022, 15: 181-191.
|
37. |
Sadeghi AH, Mank Q, Tuzcu AS, et al. Artificial intelligence-assisted augmented reality robotic lung surgery: navigating the future of thoracic surgery. JTCVS Tech, 2024, 26: 121-125.
|
38. |
Kuang Q, Feng B, Xu K, et al. Multimodal deep learning radiomics model for predicting postoperative progression in solid stage I non-small cell lung cancer. Cancer Imaging, 2024, 24(1): 140.
|
39. |
Kim H, Goo JM, Lee KH, et al. Preoperative CT-based deep learning model for predicting disease-free survival in patients with lung adenocarcinomas. Radiology, 2020, 296(1): 216-224.
|
40. |
Zhou CM, Xue Q, Li H, et al. A predictive model for post-thoracoscopic surgery pulmonary complications based on the PBNN algorithm. Sci Rep, 2024, 14(1): 7035.
|