- Department of General Surgery, Affiliated Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China;
Citation: TANGShi-lei, YANGZhao-guo, LIHang-yu. Research Progress of The Monocarboxylate Transporter Proteins in Malignant Tumors. CHINESE JOURNAL OF BASES AND CLINICS IN GENERAL SURGERY, 2015, 22(6): 746-753. doi: 10.7507/1007-9424.20150195 Copy
Copyright © the editorial department of CHINESE JOURNAL OF BASES AND CLINICS IN GENERAL SURGERY of West China Medical Publisher. All rights reserved
1. | Halestrap AP, Meredith D.The SLC16 gene family-from monocarboxylate transporters(MCTs)to aromatic amino acid transporters and beyond.Pflugers Arch, 2004, 447(5):619-628. |
2. | Halestrap AP.The SLC16 gene family-structure, role and regulation in health and disease.Mol Aspects Med, 2013, 34(2-3):337-349. |
3. | Pinheiro C, Longatto-Filho A, Azevedo-Silva J, et al.Role of monocarboxylate transporters in human cancers:state of the art.J Bioenerg Biomembr, 2012, 44(1):127-139. |
4. | Halestrap AP.The monocarboxylate transporter family-structure and functional characterization.IUBMB Life, 2012, 64(1):1-9. |
5. | Halestrap AP, Price NT.The proton-linked monocarboxylate transporter(MCT)family:structure, function and regulation.Biochem J, 1999, 343 Pt 2:281-299. |
6. | Pinheiro C, Sousa B, Albergaria A, et al.GLUT1 and CAIX expression profiles in breast cancer correlate with adverse prognostic factors and MCT1 overexpression.Histol Histopathol, 2011, 26(10):1279-1286. |
7. | Gatenby RA, Gillies RJ.Why do cancers have high aerobic glycolysis?.Nat Rev Cancer, 2004, 4(11):891-899. |
8. | Frauwirth KA, Thompson CB.Regulation of T lymphocyte metabolism.J Immunol, 2004, 172(8):4661-4665. |
9. | Fischer K, Hoffmann P, Voelkl S, et al.Inhibitory effect of tumor cell-derived lactic acid on human T cells.Blood, 2007, 109(9):3812-3819. |
10. | Végran F, Boidot R, Michiels C, et al.Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-κB/IL-8 pathway that drives tumor angiogenesis.Cancer Res, 2011, 71(7):2550-2560. |
11. | Ritzhaupt A, Wood IS, Ellis A, et al.Identification of a monocarboxylate transporter isoform type 1(MCT1)on the luminal membrane of human and pig colon.Biochem Soc Trans, 1998, 26(2):S120. |
12. | Pinheiro C, Longatto-Filho A, Scapulatempo C, et al.Increased expression of monocarboxylate transporters 1, 2, and 4 in colorectal carcinomas.Virchows Arch, 2008, 452(2):139-146. |
13. | Koukourakis MI, Giatromanolaki A, Harris AL, et al.Comparison of metabolic pathways between cancer cells and stromal cells in colorectal carcinomas:a metabolic survival role for tumor-associated stroma.Cancer Res, 2006, 66(2):632-637. |
14. | Asada K, Miyamoto K, Fukutomi T, et al.Reduced expression of GNA11 and silencing of MCT1 in human breast cancers.Oncology, 2003, 64(4):380-388. |
15. | Pinheiro C, Albergaria A, Paredes J, et al.Monocarboxylate transporter 1 is up-regulated in basal-like breast carcinoma.Histopathology, 2010, 56(7):860-867. |
16. | Pinheiro C, Reis RM, Ricardo S, et al.Expression of monocarboxylate transporters 1, 2, and 4 in human tumours and their association with CD147 and CD44.J Biomed Biotechnol, 2010, 2010:427694. |
17. | Martins D, Beça FF, Sousa B, et al.Loss of caveolin-1 and gain of MCT4 expression in the tumor stroma key events in the progression from an in situ to an invasive breast carcinoma.Cell Cycle, 2013, 12(16):2684-2690. |
18. | Hussien R, Brooks GA.Mitochondrial and plasma membrane lactate transporter and lactate dehydrogenase isoform expression in breast cancer cell lines.Physiol Genomics, 2011, 43(5):255-264. |
19. | Froberg MK, Gerhart DZ, Enerson BE, et al.Expression of monocarboxylate transporter MCT1 in normal and neoplastic human CNS tissues.Neuroreport, 2001, 12(4):761-765. |
20. | Mathupala SP, Parajuli P, Sloan AE.Silencing of monocarboxylate transporters via small interfering ribonucleic acid inhibits glycolysis and induces cell death in malignant glioma:an in vitro study.Neurosurgery, 2004, 55(6):1410-1419. |
21. | 21王晓澍.CD147、MCT1在人脑胶质瘤中的表达及CD147单抗对U251细胞代谢干预的实验研究.四川:四川大学, 2006. |
22. | Fang J, Quinones QJ, Holman TL, et al.The H+-linked monocarboxylate transporter(MCT1/SLC16A1):a potential therapeutic target for high-risk neuroblastoma.Mol Pharmacol, 2006, 70(6):2108-2115. |
23. | Li KK, Pang JC, Ching AK, et al.miR-124 is frequently down-regulated in medulloblastoma and is a negative regulator of SLC16A1.Hum Pathol, 2009, 40(9):1234-1243. |
24. | Miranda-Gonçalves V, Honavar M, Pinheiro C, et al.Monocarboxylate transporters(MCTs)in gliomas:expression and exploitation as therapeutic targets.Neuro Oncol, 2013, 15(2):172-188. |
25. | Koukourakis MI, Giatromanolaki A, Bougioukas G, et al.Lung cancer:a comparative study of metabolism related protein expression in cancer cells and tumor associated stroma.Cancer Biol Ther, 2007, 6(9):1476-1479. |
26. | Ladanyi M, Antonescu CR, Drobnjak M, et al.The precrystalline cytoplasmic granules of alveolar soft part sarcoma contain monocarboxylate transporter 1 and CD147.Am J Pathol, 2002, 160(4):1215-1221. |
27. | Pinheiro C, Longatto-Filho A, Simões K, et al.The prognostic value of CD147/EMMPRIN is associated with monocarboxylate transporter 1 co-expression in gastric cancer.Eur J Cancer, 2009, 45(13):2418-2424. |
28. | Pinheiro C, Longatto-Filho A, Pereira SM, et al.Monocarboxylate transporters 1 and 4 are associated with CD147 in cervical carcinoma.Dis Markers, 2009, 26(3):97-103. |
29. | Pinheiro C, Longatto-Filho A, Ferreira L, et al.Increasing expression of monocarboxylate transporters 1 and 4 along progression to invasive cervical carcinoma.Int J Gynecol Pathol, 2008, 27(4):568-574. |
30. | Chen H, Wang L, Beretov J, et al.Co-expression of CD147/EMMPRIN with monocarboxylate transporters and multiple drug resistance proteins is associated with epithelial ovarian cancer progression.Clin Exp Metastasis, 2010, 27(8):557-569. |
31. | Hao J, Chen H, Madigan MC, et al.Co-expression of CD147(EMMPRIN), CD44v3-10, MDR1 and monocarboxylate transporters is associated with prostate cancer drug resistance and progression.Br J Cancer, 2010, 103(7):1008-1018. |
32. | Pértega-Gomes N, Vizcaíno JR, Miranda-Gonçalves V, et al.Monocarboxylate transporter 4(MCT4)and CD147 overexpression is associated with poor prognosis in prostate cancer.BMC Cancer, 2011, 11:312. |
33. | Zhao Z, Wu MS, Zou C, et al.Downregulation of MCT1 inhibits tumor growth, metastasis and enhances chemotherapeutic efficacy in osteosarcoma through regulation of the NF-κB pathway.Cancer Lett, 2014, 342(1):150-158. |
34. | Curry JM, Tuluc M, Whitaker-Menezes D, et al.Cancer metabolism, stemness and tumor recurrence:MCT1 and MCT4 are functional biomarkers of metabolic symbiosis in head and neck cancer.Cell Cycle, 2013, 12(9):1371-1384. |
35. | Sweeny L, Dean NR, Frederick JW, et al.CD147 expression in advanced cutaneous squamous cell carcinoma.J Cutan Pathol, 2012, 39(6):603-609. |
36. | De Oliveira AT, Pinheiro C, Longatto-Filho A, et al.Co-expression of monocarboxylate transporter 1(MCT1)and its chaperone(CD147)is associated with low survival in patients with gastrointestinal stromal tumors(GISTs).J Bioenerg Biomembr, 2012, 44(1):171-178. |
37. | Kirk P, Wilson MC, Heddle C, et al.CD147 is tightly associated with lactate transporters MCT1 and MCT4 and facilitates their cell surface expression.EMBO J, 2000, 19(15):3896-3904. |
38. | Wilson MC, Meredith D, Halestrap AP.Fluorescence resonance energy transfer studies on the interaction between the lactate transporter MCT1 and CD147 provide information on the topology and stoichiometry of the complex in situ.J Biol Chem, 2002, 277(5):3666-3672. |
39. | Gallagher SM, Castorino JJ, Wang D, et al.Monocarboxylate transporter 4 regulates maturation and trafficking of CD147 to the plasma membrane in the metastatic breast cancer cell line MDA-MB-231.Cancer Res, 2007, 67(9):4182-4189. |
40. | Makuc J, Cappellaro C, Boles E.Co-expression of a mammalian accessory trafficking protein enables functional expression of the rat MCT1 monocarboxylate transporter in Saccharomyces cerevisiae.FEMS Yeast Res, 2004, 4(8):795-801. |
41. | Philp NJ, Ochrietor JD, Rudoy C, et al.Loss of MCT1, MCT3, and MCT4 expression in the retinal pigment epithelium and neural retina of the 5A11/basigin-null mouse.Invest Ophthalmol Vis Sci, 2003, 44(3):1305-1311. |
42. | Deora AA, Philp N, Hu J, et al.Mechanisms regulating tissue-specific polarity of monocarboxylate transporters and their chaperone CD147 in kidney and retinal epithelia.Proc Natl Acad Sci U S A, 2005, 102(45):16245-16250. |
43. | Wilson MC, Meredith D, Fox JE, et al.Basigin(CD147)is the target for organomercurial inhibition of monocarboxylate transporter isoforms 1 and 4:the ancillary protein for the insensitive MCT2 is EMBIGIN(gp70).J Biol Chem, 2005, 280(29):27213-27221. |
44. | Pan Y, He B, Song G, et al.CD147 silencing via RNA interference reduces tumor cell invasion, metastasis and increases chemosensitivity in pancreatic cancer cells.Oncol Rep, 2012, 27(6):2003-2009. |
45. | Le Floch R, Chiche J, Marchiq I, et al.CD147 subunit of lactate/H+symporters MCT1 and hypoxia-inducible MCT4 is critical for energetics and growth of glycolytic tumors.Proc Natl Acad Sci U S A, 2011, 108(40):16663-16668. |
46. | Schneiderhan W, Scheler M, Holzmann KH, et al.CD147 silencing inhibits lactate transport and reduces malignant potential of pancreatic cancer cells in in vivo and in vitro models.Gut, 2009, 58(10):1391-1398. |
47. | Walters DK, Arendt BK, Jelinek DF.CD147 regulates the expression of MCT1 and lactate export in multiple myeloma cells.Cell Cycle, 2013, 12(19):3175-3183. |
48. | Baba M, Inoue M, Itoh K, et al.Blocking CD147 induces cell death in cancer cells through impairment of glycolytic energy metabolism.Biochem Biophys Res Commun, 2008, 374(1):111-116. |
49. | Nabeshima K, Iwasaki H, Koga K, et al.Emmprin(basigin/CD147):matrix metalloproteinase modulator and multifunctional cell recognition molecule that plays a critical role in cancer progression.Pathol Int, 2006, 56(7):359-367. |
50. | Yan L, Zucker S, Toole BR.Roles of the multifunctional glycoprotein, emmprin(basigin; CD147), in tumour progression.Thromb Haemost, 2005, 93(2):199-204. |
51. | Iacono KT, Brown AL, Greene MI, et al.CD147 immunoglobulin superfamily receptor function and role in pathology.Exp Mol Pathol, 2007, 83(3):283-295. |
52. | Slomiany MG, Grass GD, Robertson AD, et al.Hyaluronan, CD44, and emmprin regulate lactate efflux and membrane localization of monocarboxylate transporters in human breast carcinoma cells.Cancer Res, 2009, 69(4):1293-1301. |
53. | Marhaba R, Zöller M.CD44 in cancer progression:adhesion, migration and growth regulation.J Mol Histol, 2004, 35(3):211-231. |
54. | Toole BP, Slomiany MG.Hyaluronan:a constitutive regulator of chemoresistance and malignancy in cancer cells.Semin Cancer Biol, 2008, 18(4):244-250. |
55. | Toole BP, Slomiany MG.Hyaluronan, CD44 and Emmprin:partners in cancer cell chemoresistance.Drug Resist Updat, 2008, 11(3):110-121. |
56. | Cheng C, Edin NF, Lauritzen KH, et al.Alterations of monocarboxylate transporter densities during hypoxia in brain and breast tumour cells.Cell Oncol(Dordr), 2012, 35(3):217-227. |
57. | Chiche J, Ricci JE, Pouysségur J.Tumor hypoxia and metabolism-towards novel anticancer approaches.Ann Endocrinol(Paris), 2013, 74(2):111-114. |
58. | Boidot R, Végran F, Meulle A, et al.Regulation of monocarboxylate transporter MCT1 expression by p53 mediates inward and outward lactate fluxes in tumors.Cancer Res, 2012, 72(4):939-948. |
59. | Doherty JR, Yang C, Scott KE, et al.Blocking lactate export by inhibiting the Myc target MCT1 disables glycolysis and glutathione synthesis.Cancer Res, 2014, 74(3):908-920. |
60. | Gottfried E, Lang SA, Renner K, et al.New aspects of an old drug-diclofenac targets MYC and glucose metabolism in tumor cells.PLoS One, 2013, 8(7):e66987. |
61. | Lodi A, Woods SM, Ronen SM.Treatment with the MEK inhibitor U0126 induces decreased hyperpolarized pyruvate to lactate conversion in breast, but not prostate, cancer cells.NMR Biomed, 2013, 26(3):299-306. |
62. | Narumi K, Furugen A, Kobayashi M, et al.Regulation of monocarboxylate transporter 1 in skeletal muscle cells by intracellular signaling pathways.Biol Pharm Bull, 2010, 33(9):1568-1573. |
63. | Queirós O, Preto A, Pacheco A, et al.Butyrate activates the monocarboxylate transporter MCT4 expression in breast cancer cells and enhances the antitumor activity of 3-bromopyruvate.J Bioenerg Biomembr, 2012, 44(1):141-153. |
64. | Witkiewicz AK, Dasgupta A, Nguyen KH, et al.Stromal caveolin-1 levels predict early DCIS progression to invasive breast cancer.Cancer Biol Ther, 2009, 8(11):1071-1079. |
65. | Witkiewicz AK, Whitaker-Menezes D, Dasgupta A, et al.Using the"reverse Warburg effect"to identify high-risk breast cancer patients:stromal MCT4 predicts poor clinical outcome in triple-negative breast cancers.Cell Cycle, 2012, 11(6):1108-1117. |
66. | Wu KN, Queenan M, Brody JR, et al.Loss of stromal caveolin-1 expression in malignant melanoma metastases predicts poor survival.Cell Cycle, 2011, 10(24):4250-4255. |
67. | Martinez-Outschoorn UE, Lin Z, Whitaker-Menezes D, et al.Ketone bodies and two-compartment tumor metabolism:stromal ketone production fuels mitochondrial biogenesis in epithelial cancer cells.Cell Cycle, 2012, 11(21):3956-3963. |
68. | Rattigan YI, Patel BB, Ackerstaff E, et al.Lactate is a mediator of metabolic cooperation between stromal carcinoma associated fibroblasts and glycolytic tumor cells in the tumor microenvironment.Exp Cell Res, 2012, 318(4):326-335. |
69. | Busk M, Walenta S, Mueller-Klieser W, et al.Inhibition of tumor lactate oxidation:consequences for the tumor microenvironment.Radiother Oncol, 2011, 99(3):404-411. |
70. | Sonveaux P, Copetti T, De Saedeleer CJ, et al.Targeting the lactate transporter MCT1 in endothelial cells inhibits lactate-induced HIF-1 activation and tumor angiogenesis.PLoS One, 2012, 7(3):e33418. |
71. | De Saedeleer CJ, Copetti T, Porporato PE, et al.Lactate activates HIF-1 in oxidative but not in Warburg-phenotype human tumor cells.PLoS One, 2012, 7(10):e46571. |
72. | Pinheiro C, Longatto-Filho A, Nogueira R, et al.Lactate-induced IL-8 pathway in endothelial cells-letter.Cancer Res, 2012, 72(7):1901-1902. |
73. | Fiaschi T, Marini A, Giannoni E, et al.Reciprocal metabolic reprogramming through lactate shuttle coordinately influences tumor-stroma interplay.Cancer Res, 2012, 72(19):5130-5140. |
74. | Izumi H, Takahashi M, Uramoto H, et al.Monocarboxylate transporters 1 and 4 are involved in the invasion activity of human lung cancer cells.Cancer Sci, 2011, 102(5):1007-1013. |
75. | Sonveaux P, Végran F, Schroeder T, et al.Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice.J Clin Invest, 2008, 118(12):3930-3942. |
76. | Wahl ML, Owen JA, Burd R, et al.Regulation of intracellular pH in human melanoma:potential therapeutic implications.Mol Cancer Ther, 2002, 1(8):617-628. |
77. | Colen CB, Seraji-Bozorgzad N, Marples B, et al.Metabolic remodeling of malignant gliomas for enhanced sensitization during radiotherapy:an in vitro study.Neurosurgery, 2006, 59(6):1313-1323. |
78. | Sánchez-Tena S, Vizán P, Dudeja PK, et al.Green tea phenolics inhibit butyrate-induced differentiation of colon cancer cells by interacting with monocarboxylate transporter 1.Biochim Biophys Acta, 2013, 1832(12):2264-2270. |
79. | Grotius J, Dittfeld C, Huether M, et al.Impact of exogenous lactate on survival and radioresponse of carcinoma cells in vitro.Int J Radiat Biol, 2009, 85(11). |
- 1. Halestrap AP, Meredith D.The SLC16 gene family-from monocarboxylate transporters(MCTs)to aromatic amino acid transporters and beyond.Pflugers Arch, 2004, 447(5):619-628.
- 2. Halestrap AP.The SLC16 gene family-structure, role and regulation in health and disease.Mol Aspects Med, 2013, 34(2-3):337-349.
- 3. Pinheiro C, Longatto-Filho A, Azevedo-Silva J, et al.Role of monocarboxylate transporters in human cancers:state of the art.J Bioenerg Biomembr, 2012, 44(1):127-139.
- 4. Halestrap AP.The monocarboxylate transporter family-structure and functional characterization.IUBMB Life, 2012, 64(1):1-9.
- 5. Halestrap AP, Price NT.The proton-linked monocarboxylate transporter(MCT)family:structure, function and regulation.Biochem J, 1999, 343 Pt 2:281-299.
- 6. Pinheiro C, Sousa B, Albergaria A, et al.GLUT1 and CAIX expression profiles in breast cancer correlate with adverse prognostic factors and MCT1 overexpression.Histol Histopathol, 2011, 26(10):1279-1286.
- 7. Gatenby RA, Gillies RJ.Why do cancers have high aerobic glycolysis?.Nat Rev Cancer, 2004, 4(11):891-899.
- 8. Frauwirth KA, Thompson CB.Regulation of T lymphocyte metabolism.J Immunol, 2004, 172(8):4661-4665.
- 9. Fischer K, Hoffmann P, Voelkl S, et al.Inhibitory effect of tumor cell-derived lactic acid on human T cells.Blood, 2007, 109(9):3812-3819.
- 10. Végran F, Boidot R, Michiels C, et al.Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-κB/IL-8 pathway that drives tumor angiogenesis.Cancer Res, 2011, 71(7):2550-2560.
- 11. Ritzhaupt A, Wood IS, Ellis A, et al.Identification of a monocarboxylate transporter isoform type 1(MCT1)on the luminal membrane of human and pig colon.Biochem Soc Trans, 1998, 26(2):S120.
- 12. Pinheiro C, Longatto-Filho A, Scapulatempo C, et al.Increased expression of monocarboxylate transporters 1, 2, and 4 in colorectal carcinomas.Virchows Arch, 2008, 452(2):139-146.
- 13. Koukourakis MI, Giatromanolaki A, Harris AL, et al.Comparison of metabolic pathways between cancer cells and stromal cells in colorectal carcinomas:a metabolic survival role for tumor-associated stroma.Cancer Res, 2006, 66(2):632-637.
- 14. Asada K, Miyamoto K, Fukutomi T, et al.Reduced expression of GNA11 and silencing of MCT1 in human breast cancers.Oncology, 2003, 64(4):380-388.
- 15. Pinheiro C, Albergaria A, Paredes J, et al.Monocarboxylate transporter 1 is up-regulated in basal-like breast carcinoma.Histopathology, 2010, 56(7):860-867.
- 16. Pinheiro C, Reis RM, Ricardo S, et al.Expression of monocarboxylate transporters 1, 2, and 4 in human tumours and their association with CD147 and CD44.J Biomed Biotechnol, 2010, 2010:427694.
- 17. Martins D, Beça FF, Sousa B, et al.Loss of caveolin-1 and gain of MCT4 expression in the tumor stroma key events in the progression from an in situ to an invasive breast carcinoma.Cell Cycle, 2013, 12(16):2684-2690.
- 18. Hussien R, Brooks GA.Mitochondrial and plasma membrane lactate transporter and lactate dehydrogenase isoform expression in breast cancer cell lines.Physiol Genomics, 2011, 43(5):255-264.
- 19. Froberg MK, Gerhart DZ, Enerson BE, et al.Expression of monocarboxylate transporter MCT1 in normal and neoplastic human CNS tissues.Neuroreport, 2001, 12(4):761-765.
- 20. Mathupala SP, Parajuli P, Sloan AE.Silencing of monocarboxylate transporters via small interfering ribonucleic acid inhibits glycolysis and induces cell death in malignant glioma:an in vitro study.Neurosurgery, 2004, 55(6):1410-1419.
- 21. 21王晓澍.CD147、MCT1在人脑胶质瘤中的表达及CD147单抗对U251细胞代谢干预的实验研究.四川:四川大学, 2006.
- 22. Fang J, Quinones QJ, Holman TL, et al.The H+-linked monocarboxylate transporter(MCT1/SLC16A1):a potential therapeutic target for high-risk neuroblastoma.Mol Pharmacol, 2006, 70(6):2108-2115.
- 23. Li KK, Pang JC, Ching AK, et al.miR-124 is frequently down-regulated in medulloblastoma and is a negative regulator of SLC16A1.Hum Pathol, 2009, 40(9):1234-1243.
- 24. Miranda-Gonçalves V, Honavar M, Pinheiro C, et al.Monocarboxylate transporters(MCTs)in gliomas:expression and exploitation as therapeutic targets.Neuro Oncol, 2013, 15(2):172-188.
- 25. Koukourakis MI, Giatromanolaki A, Bougioukas G, et al.Lung cancer:a comparative study of metabolism related protein expression in cancer cells and tumor associated stroma.Cancer Biol Ther, 2007, 6(9):1476-1479.
- 26. Ladanyi M, Antonescu CR, Drobnjak M, et al.The precrystalline cytoplasmic granules of alveolar soft part sarcoma contain monocarboxylate transporter 1 and CD147.Am J Pathol, 2002, 160(4):1215-1221.
- 27. Pinheiro C, Longatto-Filho A, Simões K, et al.The prognostic value of CD147/EMMPRIN is associated with monocarboxylate transporter 1 co-expression in gastric cancer.Eur J Cancer, 2009, 45(13):2418-2424.
- 28. Pinheiro C, Longatto-Filho A, Pereira SM, et al.Monocarboxylate transporters 1 and 4 are associated with CD147 in cervical carcinoma.Dis Markers, 2009, 26(3):97-103.
- 29. Pinheiro C, Longatto-Filho A, Ferreira L, et al.Increasing expression of monocarboxylate transporters 1 and 4 along progression to invasive cervical carcinoma.Int J Gynecol Pathol, 2008, 27(4):568-574.
- 30. Chen H, Wang L, Beretov J, et al.Co-expression of CD147/EMMPRIN with monocarboxylate transporters and multiple drug resistance proteins is associated with epithelial ovarian cancer progression.Clin Exp Metastasis, 2010, 27(8):557-569.
- 31. Hao J, Chen H, Madigan MC, et al.Co-expression of CD147(EMMPRIN), CD44v3-10, MDR1 and monocarboxylate transporters is associated with prostate cancer drug resistance and progression.Br J Cancer, 2010, 103(7):1008-1018.
- 32. Pértega-Gomes N, Vizcaíno JR, Miranda-Gonçalves V, et al.Monocarboxylate transporter 4(MCT4)and CD147 overexpression is associated with poor prognosis in prostate cancer.BMC Cancer, 2011, 11:312.
- 33. Zhao Z, Wu MS, Zou C, et al.Downregulation of MCT1 inhibits tumor growth, metastasis and enhances chemotherapeutic efficacy in osteosarcoma through regulation of the NF-κB pathway.Cancer Lett, 2014, 342(1):150-158.
- 34. Curry JM, Tuluc M, Whitaker-Menezes D, et al.Cancer metabolism, stemness and tumor recurrence:MCT1 and MCT4 are functional biomarkers of metabolic symbiosis in head and neck cancer.Cell Cycle, 2013, 12(9):1371-1384.
- 35. Sweeny L, Dean NR, Frederick JW, et al.CD147 expression in advanced cutaneous squamous cell carcinoma.J Cutan Pathol, 2012, 39(6):603-609.
- 36. De Oliveira AT, Pinheiro C, Longatto-Filho A, et al.Co-expression of monocarboxylate transporter 1(MCT1)and its chaperone(CD147)is associated with low survival in patients with gastrointestinal stromal tumors(GISTs).J Bioenerg Biomembr, 2012, 44(1):171-178.
- 37. Kirk P, Wilson MC, Heddle C, et al.CD147 is tightly associated with lactate transporters MCT1 and MCT4 and facilitates their cell surface expression.EMBO J, 2000, 19(15):3896-3904.
- 38. Wilson MC, Meredith D, Halestrap AP.Fluorescence resonance energy transfer studies on the interaction between the lactate transporter MCT1 and CD147 provide information on the topology and stoichiometry of the complex in situ.J Biol Chem, 2002, 277(5):3666-3672.
- 39. Gallagher SM, Castorino JJ, Wang D, et al.Monocarboxylate transporter 4 regulates maturation and trafficking of CD147 to the plasma membrane in the metastatic breast cancer cell line MDA-MB-231.Cancer Res, 2007, 67(9):4182-4189.
- 40. Makuc J, Cappellaro C, Boles E.Co-expression of a mammalian accessory trafficking protein enables functional expression of the rat MCT1 monocarboxylate transporter in Saccharomyces cerevisiae.FEMS Yeast Res, 2004, 4(8):795-801.
- 41. Philp NJ, Ochrietor JD, Rudoy C, et al.Loss of MCT1, MCT3, and MCT4 expression in the retinal pigment epithelium and neural retina of the 5A11/basigin-null mouse.Invest Ophthalmol Vis Sci, 2003, 44(3):1305-1311.
- 42. Deora AA, Philp N, Hu J, et al.Mechanisms regulating tissue-specific polarity of monocarboxylate transporters and their chaperone CD147 in kidney and retinal epithelia.Proc Natl Acad Sci U S A, 2005, 102(45):16245-16250.
- 43. Wilson MC, Meredith D, Fox JE, et al.Basigin(CD147)is the target for organomercurial inhibition of monocarboxylate transporter isoforms 1 and 4:the ancillary protein for the insensitive MCT2 is EMBIGIN(gp70).J Biol Chem, 2005, 280(29):27213-27221.
- 44. Pan Y, He B, Song G, et al.CD147 silencing via RNA interference reduces tumor cell invasion, metastasis and increases chemosensitivity in pancreatic cancer cells.Oncol Rep, 2012, 27(6):2003-2009.
- 45. Le Floch R, Chiche J, Marchiq I, et al.CD147 subunit of lactate/H+symporters MCT1 and hypoxia-inducible MCT4 is critical for energetics and growth of glycolytic tumors.Proc Natl Acad Sci U S A, 2011, 108(40):16663-16668.
- 46. Schneiderhan W, Scheler M, Holzmann KH, et al.CD147 silencing inhibits lactate transport and reduces malignant potential of pancreatic cancer cells in in vivo and in vitro models.Gut, 2009, 58(10):1391-1398.
- 47. Walters DK, Arendt BK, Jelinek DF.CD147 regulates the expression of MCT1 and lactate export in multiple myeloma cells.Cell Cycle, 2013, 12(19):3175-3183.
- 48. Baba M, Inoue M, Itoh K, et al.Blocking CD147 induces cell death in cancer cells through impairment of glycolytic energy metabolism.Biochem Biophys Res Commun, 2008, 374(1):111-116.
- 49. Nabeshima K, Iwasaki H, Koga K, et al.Emmprin(basigin/CD147):matrix metalloproteinase modulator and multifunctional cell recognition molecule that plays a critical role in cancer progression.Pathol Int, 2006, 56(7):359-367.
- 50. Yan L, Zucker S, Toole BR.Roles of the multifunctional glycoprotein, emmprin(basigin; CD147), in tumour progression.Thromb Haemost, 2005, 93(2):199-204.
- 51. Iacono KT, Brown AL, Greene MI, et al.CD147 immunoglobulin superfamily receptor function and role in pathology.Exp Mol Pathol, 2007, 83(3):283-295.
- 52. Slomiany MG, Grass GD, Robertson AD, et al.Hyaluronan, CD44, and emmprin regulate lactate efflux and membrane localization of monocarboxylate transporters in human breast carcinoma cells.Cancer Res, 2009, 69(4):1293-1301.
- 53. Marhaba R, Zöller M.CD44 in cancer progression:adhesion, migration and growth regulation.J Mol Histol, 2004, 35(3):211-231.
- 54. Toole BP, Slomiany MG.Hyaluronan:a constitutive regulator of chemoresistance and malignancy in cancer cells.Semin Cancer Biol, 2008, 18(4):244-250.
- 55. Toole BP, Slomiany MG.Hyaluronan, CD44 and Emmprin:partners in cancer cell chemoresistance.Drug Resist Updat, 2008, 11(3):110-121.
- 56. Cheng C, Edin NF, Lauritzen KH, et al.Alterations of monocarboxylate transporter densities during hypoxia in brain and breast tumour cells.Cell Oncol(Dordr), 2012, 35(3):217-227.
- 57. Chiche J, Ricci JE, Pouysségur J.Tumor hypoxia and metabolism-towards novel anticancer approaches.Ann Endocrinol(Paris), 2013, 74(2):111-114.
- 58. Boidot R, Végran F, Meulle A, et al.Regulation of monocarboxylate transporter MCT1 expression by p53 mediates inward and outward lactate fluxes in tumors.Cancer Res, 2012, 72(4):939-948.
- 59. Doherty JR, Yang C, Scott KE, et al.Blocking lactate export by inhibiting the Myc target MCT1 disables glycolysis and glutathione synthesis.Cancer Res, 2014, 74(3):908-920.
- 60. Gottfried E, Lang SA, Renner K, et al.New aspects of an old drug-diclofenac targets MYC and glucose metabolism in tumor cells.PLoS One, 2013, 8(7):e66987.
- 61. Lodi A, Woods SM, Ronen SM.Treatment with the MEK inhibitor U0126 induces decreased hyperpolarized pyruvate to lactate conversion in breast, but not prostate, cancer cells.NMR Biomed, 2013, 26(3):299-306.
- 62. Narumi K, Furugen A, Kobayashi M, et al.Regulation of monocarboxylate transporter 1 in skeletal muscle cells by intracellular signaling pathways.Biol Pharm Bull, 2010, 33(9):1568-1573.
- 63. Queirós O, Preto A, Pacheco A, et al.Butyrate activates the monocarboxylate transporter MCT4 expression in breast cancer cells and enhances the antitumor activity of 3-bromopyruvate.J Bioenerg Biomembr, 2012, 44(1):141-153.
- 64. Witkiewicz AK, Dasgupta A, Nguyen KH, et al.Stromal caveolin-1 levels predict early DCIS progression to invasive breast cancer.Cancer Biol Ther, 2009, 8(11):1071-1079.
- 65. Witkiewicz AK, Whitaker-Menezes D, Dasgupta A, et al.Using the"reverse Warburg effect"to identify high-risk breast cancer patients:stromal MCT4 predicts poor clinical outcome in triple-negative breast cancers.Cell Cycle, 2012, 11(6):1108-1117.
- 66. Wu KN, Queenan M, Brody JR, et al.Loss of stromal caveolin-1 expression in malignant melanoma metastases predicts poor survival.Cell Cycle, 2011, 10(24):4250-4255.
- 67. Martinez-Outschoorn UE, Lin Z, Whitaker-Menezes D, et al.Ketone bodies and two-compartment tumor metabolism:stromal ketone production fuels mitochondrial biogenesis in epithelial cancer cells.Cell Cycle, 2012, 11(21):3956-3963.
- 68. Rattigan YI, Patel BB, Ackerstaff E, et al.Lactate is a mediator of metabolic cooperation between stromal carcinoma associated fibroblasts and glycolytic tumor cells in the tumor microenvironment.Exp Cell Res, 2012, 318(4):326-335.
- 69. Busk M, Walenta S, Mueller-Klieser W, et al.Inhibition of tumor lactate oxidation:consequences for the tumor microenvironment.Radiother Oncol, 2011, 99(3):404-411.
- 70. Sonveaux P, Copetti T, De Saedeleer CJ, et al.Targeting the lactate transporter MCT1 in endothelial cells inhibits lactate-induced HIF-1 activation and tumor angiogenesis.PLoS One, 2012, 7(3):e33418.
- 71. De Saedeleer CJ, Copetti T, Porporato PE, et al.Lactate activates HIF-1 in oxidative but not in Warburg-phenotype human tumor cells.PLoS One, 2012, 7(10):e46571.
- 72. Pinheiro C, Longatto-Filho A, Nogueira R, et al.Lactate-induced IL-8 pathway in endothelial cells-letter.Cancer Res, 2012, 72(7):1901-1902.
- 73. Fiaschi T, Marini A, Giannoni E, et al.Reciprocal metabolic reprogramming through lactate shuttle coordinately influences tumor-stroma interplay.Cancer Res, 2012, 72(19):5130-5140.
- 74. Izumi H, Takahashi M, Uramoto H, et al.Monocarboxylate transporters 1 and 4 are involved in the invasion activity of human lung cancer cells.Cancer Sci, 2011, 102(5):1007-1013.
- 75. Sonveaux P, Végran F, Schroeder T, et al.Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice.J Clin Invest, 2008, 118(12):3930-3942.
- 76. Wahl ML, Owen JA, Burd R, et al.Regulation of intracellular pH in human melanoma:potential therapeutic implications.Mol Cancer Ther, 2002, 1(8):617-628.
- 77. Colen CB, Seraji-Bozorgzad N, Marples B, et al.Metabolic remodeling of malignant gliomas for enhanced sensitization during radiotherapy:an in vitro study.Neurosurgery, 2006, 59(6):1313-1323.
- 78. Sánchez-Tena S, Vizán P, Dudeja PK, et al.Green tea phenolics inhibit butyrate-induced differentiation of colon cancer cells by interacting with monocarboxylate transporter 1.Biochim Biophys Acta, 2013, 1832(12):2264-2270.
- 79. Grotius J, Dittfeld C, Huether M, et al.Impact of exogenous lactate on survival and radioresponse of carcinoma cells in vitro.Int J Radiat Biol, 2009, 85(11).