- Department of Thyroid Surgery, West China Hospital, Sichuan University, Chengdu 610041, P. R. China;
Citation: WEI Tao, ZHU Jingqiang. Advances of relationship between p53 gene family and thyroid cancer. CHINESE JOURNAL OF BASES AND CLINICS IN GENERAL SURGERY, 2019, 26(11): 1372-1377. doi: 10.7507/1007-9424.201906054 Copy
Copyright © the editorial department of CHINESE JOURNAL OF BASES AND CLINICS IN GENERAL SURGERY of West China Medical Publisher. All rights reserved
1. | Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin, 2019, 69(1): 7-34. |
2. | Nikiforov YE, Steward DL, Robinson-Smith TM, et al. Molecular testing for mutations in improving the fine-needle aspiration diagnosis of thyroid nodules. J Clin Endocrinol Metab, 2009, 94(6): 2092-2098. |
3. | Guilmette J, Nosé V. Hereditary and familial thyroid tumours. Histopathology, 2018, 72(1): 70-81. |
4. | Belyi VA, Levine AJ. One billion years of p53/p63/p73 evolution. Proc Natl Acad Sci U S A, 2009, 106(42): 17609-17610. |
5. | Yang A, Kaghad M, Wang Y, et al. p63, a p53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Mol Cell, 1998, 2(3): 305-316. |
6. | Bergholz J, Xiao ZX. Role of p63 in development, tumorigenesis and cancer progression. Cancer Microenviron, 2012, 5(3): 311-322. |
7. | Kaelin WG Jr. The p53 gene family. Oncogene, 1999, 18(53): 7701-7705. |
8. | Yang A, Walker N, Bronson R, et al. p73-deficient mice have neurological, pheromonal and inflammatory defects but lack spontaneous tumours. Nature, 2000, 404(6773): 99-103. |
9. | Pietsch EC, Sykes SM, McMahon SB, et al. The p53 family and programmed cell death. Oncogene, 2008, 27(50): 6507-6521. |
10. | Milner J, Medcalf EA, Cook AC. Tumor suppressor p53: analysis of wild-type and mutant p53 complexes. Mol Cell Biol, 1991, 11(1): 12-19. |
11. | Milner J, Medcalf EA. Cotranslation of activated mutant p53 with wild type drives the wild-type p53 protein into the mutant conformation. Cell, 1991, 65(5): 765-774. |
12. | Li Q, Zhu Y, Hou L, et al. C23 promotes tumorigenesis via suppressing p53 activity. Oncotarget, 2016, 7(36): 58274-58285. |
13. | Schmale H, Bamberger C. A novel protein with strong homology to the tumor suppressor p53. Oncogene, 1997, 15(11): 1363-1367. |
14. | Thanos CD, Bowie JU. p53 Family members p63 and p73 are SAM domain-containing proteins. Protein Sci, 1999, 8(8): 1708-1710. |
15. | Augustin M, Bamberger C, Paul D, et al. Cloning and chromosomal mapping of the human p53-related KET gene to chromosome 3q27 and its murine homolog KET to mouse chromosome 16. Mamm Genome, 1998, 9(11): 899-902. |
16. | Mangiulli M, Valletti A, Caratozzolo MF, et al. Identification and functional characterization of two new transcriptional variants of the human p63 gene. Nucleic Acids Res, 2009, 37(18): 6092-6104. |
17. | Weber A, Langhanki L, Schütz A, et al. Expression profiles of p53, p63, and p73 in benign salivary gland tumors. Virchows Arch, 2002, 441(5): 428-436. |
18. | Kaghad M, Bonnet H, Yang A, et al. Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell, 1997, 90(4): 809-819. |
19. | De Laurenzi VD, Catani MV, Terrinoni A, et al. Additional complexity in p73: induction by mitogens in lymphoid cells and identification of two new splicing variants epsilon and zeta. Cell Death Differ, 1999, 6(5): 389-390. |
20. | Jost CA, Marin MC, Kaelin WG Jr. p73 is a simian [correction of human] p53-related protein that can induce apoptosis. Nature, 1997, 389(6647): 191-194. |
21. | Candi E, Agostini M, Melino G, et al. How the TP53 family proteins TP63 and TP73 contribute to tumorigenesis: regulators and effectors. Hum Mutat, 2014, 35(6): 702-714. |
22. | Pozniak CD, Radinovic S, Yang A, et al. An anti-apoptotic role for the p53 family member, p73, during developmental neuron death. Science, 2000, 289(5477): 304-306. |
23. | Leong CO, Vidnovic N, DeYoung MP, et al. The p63/p73 network mediates chemosensitivity to cisplatin in a biologically defined subset of primary breast cancers. J Clin Invest, 2007, 117(5): 1370-1380. |
24. | Rocco JW, Leong CO, Kuperwasser N, et al. p63 mediates survival in squamous cell carcinoma by suppression of p73-dependent apoptosis. Cancer Cell, 2006, 9(1): 45-56. |
25. | Gomes S, Leão M, Raimundo L, et al. p53 family interactions and yeast: together in anticancer therapy. Drug Discov Today, 2016, 21(4): 616-624. |
26. | Liu G, Nozell S, Xiao H, et al. DeltaNp73beta is active in transactivation and growth suppression. Mol Cell Biol, 2004, 24(2): 487-501. |
27. | Farid NR, Shi Y, Zou M. Molecular basis of thyroid cancer. Endocr Rev, 1994, 15(2): 202-232. |
28. | Hollstein M, Hergenhahn M, Yang Q, et al. New approaches to understanding p53 gene tumor mutation spectra. Mutat Res, 1999, 431(2): 199-209. |
29. | Takeuchi Y, Daa T, Kashima K, et al. Mutations of p53 in thyroid carcinoma with an insular component. Thyroid, 1999, 9(4): 377-381. |
30. | Quiros RM, Ding HG, Gattuso P, et al. Evidence that one subset of anaplastic thyroid carcinomas are derived from papillary carcinomas due to BRAF and p53 mutations. Cancer, 2005, 103(11): 2261-2268. |
31. | Dobashi Y, Sugimura H, Sakamoto A, et al. Stepwise participation of p53 gene mutation during dedifferentiation of human thyroid carcinomas. Diagn Mol Pathol, 1994, 3(1): 9-14. |
32. | Ho YS, Tseng SC, Chin TY, et al. p53 gene mutation in thyroid carcinoma. Cancer Lett, 1996, 103(1): 57-63. |
33. | Bernard H, Garmy-Susini B, Ainaoui N, et al. The p53 isoform, Δ133p53α, stimulates angiogenesis and tumour progression. Oncogene, 2013, 32(17): 2150-2160. |
34. | Cancer Genome Atlas Research Network. Integrated genomic characterization of papillary thyroid carcinoma. Cell, 2014, 159(3): 676-690. |
35. | Dralle H, Machens A, Basa J, et al. Follicular cell-derived thyroid cancer. Nat Rev Dis Primers, 2015, 1: 15077. |
36. | Moretti F, Farsetti A, Soddu S, et al. p53 re-expression inhibits proliferation and restores differentiation of human thyroid anaplastic carcinoma cells. Oncogene, 1997, 14(6): 729-740. |
37. | Fagin JA, Tang SH, Zeki K, et al. Reexpression of thyroid peroxidase in a derivative of an undifferentiated thyroid carcinoma cell line by introduction of wild-type p53. Cancer Res, 1996, 56(4): 765-771. |
38. | La Perle KM, Jhiang SM, Capen CC. Loss of p53 promotes anaplasia and local invasion in ret/PTC1-induced thyroid carcinomas. Am J Pathol, 2000, 157(2): 671-677. |
39. | Powell DJ Jr, Russell JP, Li G, et al. Altered gene expression in immunogenic poorly differentiated thyroid carcinomas from RET/PTC3p53-/- mice. Oncogene, 2001, 20(25): 3235-3246. |
40. | Nikiforov YE, Nikiforova MN, Gnepp DR, et al. Prevalence of mutations of ras and p53 in benign and malignant thyroid tumors from children exposed to radiation after the Chernobyl nuclear accident. Oncogene, 1996, 13(4): 687-693. |
41. | Marine JC, Dyer MA, Jochemsen AG. MDMX: from bench to bedside. J Cell Sci, 2007, 120(Pt 3): 371-378. |
42. | Marine JC, Francoz S, Maetens M, et al. Keeping p53 in check: essential and synergistic functions of Mdm2 and Mdm4. Cell Death Differ, 2006, 13(6): 927-934. |
43. | Prodosmo A, Giglio S, Moretti S, et al. Analysis of human MDM4 variants in papillary thyroid carcinomas reveals new potential markers of cancer properties. J Mol Med (Berl), 2008, 86(5): 585-596. |
44. | Lavra L, Ulivieri A, Rinaldo C, et al. Gal-3 is stimulated by gain-of-function p53 mutations and modulates chemoresistance in anaplastic thyroid carcinomas. J Pathol, 2009, 218(1): 66-75. |
45. | Lavra L, Rinaldo C, Ulivieri A, et al. The loss of the p53 activator HIPK2 is responsible for galectin-3 overexpression in well differentiated thyroid carcinomas. PLoS One, 2011, 6(6): e20665. |
46. | Sansal I, Sellers WR. The biology and clinical relevance of the PTEN tumor suppressor pathway. J Clin Oncol, 2004, 22(14): 2954-2963. |
47. | Stambolic V, MacPherson D, Sas D, et al. Regulation of PTEN transcription by p53. Mol Cell, 2001, 8(2): 317-325. |
48. | Tang Y, Eng C. PTEN autoregulates its expression by stabilization of p53 in a phosphatase-independent manner. Cancer Res, 2006, 66(2): 736-742. |
49. | Freedman DA, Wu L, Levine AJ. Functions of the MDM2 oncoprotein. Cell Mol Life Sci, 1999, 55(1): 96-107. |
50. | Malaguarnera R, Mandarino A, Mazzon E, et al. The p53-homologue p63 may promote thyroid cancer progression. Endocr Relat Cancer, 2005, 12(4): 953-971. |
51. | Melino G. p63 is a suppressor of tumorigenesis and metastasis interacting with mutant p53. Cell Death Differ, 2011, 18(9): 1487-1499. |
52. | Bonzanini M, Amadori PL, Sagramoso C, et al. Expression of cytokeratin 19 and protein p63 in fine needle aspiration biopsy of papillary thyroid carcinoma. Acta Cytol, 2008, 52(5): 541-548. |
53. | Su X, Chakravarti D, Flores ER. p63 steps into the limelight: crucial roles in the suppression of tumorigenesis and metastasis. Nat Rev Cancer, 2013, 13(2): 136-143. |
54. | Candi E, Rufini A, Terrinoni A, et al. DeltaNp63 regulates thymic development through enhanced expression of FgfR2 and Jag2. Proc Natl Acad Sci U S A, 2007, 104(29): 11999-12004. |
55. | Schwartz DI, Lindor NM, Walsh-Vockley C, et al. p73 mutations are not detected in sporadic and hereditary breast cancer. Breast Cancer Res Treat, 1999, 58(1): 25-29. |
56. | Kovalev S, Marchenko N, Swendeman S, et al. Expression level, allelic origin, and mutation analysis of the p73 gene in neuroblastoma tumors and cell lines. Cell Growth Differ, 1998, 9(11): 897-903. |
57. | Freebern WJ, Smith JL, Chaudhry SS, et al. Novel cell-specific and dominant negative anti-apoptotic roles of p73 in transformed leukemia cells. J Biol Chem, 2003, 278(4): 2249-2255. |
58. | Domínguez G, García JM, Peña C, et al. DeltaTAp73 upregulation correlates with poor prognosis in human tumors: putative in vivo network involving p73 isoforms, p53, and E2F-1. J Clin Oncol, 2006, 24(5): 805-815. |
59. | Ferru A, Denis S, Guilhot J, et al. Expression of TAp73 and deltaNp73 isoform transcripts in thyroid tumours. Eur J Surg Oncol, 2006, 32(2): 228-230. |
60. | Ito Y, Uramoto H, Funa K, et al. Delta Np73 expression in thyroid neoplasms originating from follicular cells. Pathology, 2006, 38(3): 205-209. |
61. | Frasca F, Vella V, Aloisi A, et al. p73 tumor-suppressor activity is impaired in human thyroid cancer. Cancer Res, 2003, 63(18): 5829-5837. |
62. | Melino G, De Laurenzi V, Vousden KH. p73: Friend or foe in tumorigenesis. Nat Rev Cancer, 2002, 2(8): 605-615. |
63. | Deyoung MP, Ellisen LW. p63 and p73 in human cancer: defining the network. Oncogene, 2007, 26(36): 5169-5183. |
64. | Ferraiuolo M, Di Agostino S, Blandino G, et al. Oncogenic intra-p53 family member interactions in human cancers. Front Oncol, 2016, 6: 77. |
- 1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin, 2019, 69(1): 7-34.
- 2. Nikiforov YE, Steward DL, Robinson-Smith TM, et al. Molecular testing for mutations in improving the fine-needle aspiration diagnosis of thyroid nodules. J Clin Endocrinol Metab, 2009, 94(6): 2092-2098.
- 3. Guilmette J, Nosé V. Hereditary and familial thyroid tumours. Histopathology, 2018, 72(1): 70-81.
- 4. Belyi VA, Levine AJ. One billion years of p53/p63/p73 evolution. Proc Natl Acad Sci U S A, 2009, 106(42): 17609-17610.
- 5. Yang A, Kaghad M, Wang Y, et al. p63, a p53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Mol Cell, 1998, 2(3): 305-316.
- 6. Bergholz J, Xiao ZX. Role of p63 in development, tumorigenesis and cancer progression. Cancer Microenviron, 2012, 5(3): 311-322.
- 7. Kaelin WG Jr. The p53 gene family. Oncogene, 1999, 18(53): 7701-7705.
- 8. Yang A, Walker N, Bronson R, et al. p73-deficient mice have neurological, pheromonal and inflammatory defects but lack spontaneous tumours. Nature, 2000, 404(6773): 99-103.
- 9. Pietsch EC, Sykes SM, McMahon SB, et al. The p53 family and programmed cell death. Oncogene, 2008, 27(50): 6507-6521.
- 10. Milner J, Medcalf EA, Cook AC. Tumor suppressor p53: analysis of wild-type and mutant p53 complexes. Mol Cell Biol, 1991, 11(1): 12-19.
- 11. Milner J, Medcalf EA. Cotranslation of activated mutant p53 with wild type drives the wild-type p53 protein into the mutant conformation. Cell, 1991, 65(5): 765-774.
- 12. Li Q, Zhu Y, Hou L, et al. C23 promotes tumorigenesis via suppressing p53 activity. Oncotarget, 2016, 7(36): 58274-58285.
- 13. Schmale H, Bamberger C. A novel protein with strong homology to the tumor suppressor p53. Oncogene, 1997, 15(11): 1363-1367.
- 14. Thanos CD, Bowie JU. p53 Family members p63 and p73 are SAM domain-containing proteins. Protein Sci, 1999, 8(8): 1708-1710.
- 15. Augustin M, Bamberger C, Paul D, et al. Cloning and chromosomal mapping of the human p53-related KET gene to chromosome 3q27 and its murine homolog KET to mouse chromosome 16. Mamm Genome, 1998, 9(11): 899-902.
- 16. Mangiulli M, Valletti A, Caratozzolo MF, et al. Identification and functional characterization of two new transcriptional variants of the human p63 gene. Nucleic Acids Res, 2009, 37(18): 6092-6104.
- 17. Weber A, Langhanki L, Schütz A, et al. Expression profiles of p53, p63, and p73 in benign salivary gland tumors. Virchows Arch, 2002, 441(5): 428-436.
- 18. Kaghad M, Bonnet H, Yang A, et al. Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell, 1997, 90(4): 809-819.
- 19. De Laurenzi VD, Catani MV, Terrinoni A, et al. Additional complexity in p73: induction by mitogens in lymphoid cells and identification of two new splicing variants epsilon and zeta. Cell Death Differ, 1999, 6(5): 389-390.
- 20. Jost CA, Marin MC, Kaelin WG Jr. p73 is a simian [correction of human] p53-related protein that can induce apoptosis. Nature, 1997, 389(6647): 191-194.
- 21. Candi E, Agostini M, Melino G, et al. How the TP53 family proteins TP63 and TP73 contribute to tumorigenesis: regulators and effectors. Hum Mutat, 2014, 35(6): 702-714.
- 22. Pozniak CD, Radinovic S, Yang A, et al. An anti-apoptotic role for the p53 family member, p73, during developmental neuron death. Science, 2000, 289(5477): 304-306.
- 23. Leong CO, Vidnovic N, DeYoung MP, et al. The p63/p73 network mediates chemosensitivity to cisplatin in a biologically defined subset of primary breast cancers. J Clin Invest, 2007, 117(5): 1370-1380.
- 24. Rocco JW, Leong CO, Kuperwasser N, et al. p63 mediates survival in squamous cell carcinoma by suppression of p73-dependent apoptosis. Cancer Cell, 2006, 9(1): 45-56.
- 25. Gomes S, Leão M, Raimundo L, et al. p53 family interactions and yeast: together in anticancer therapy. Drug Discov Today, 2016, 21(4): 616-624.
- 26. Liu G, Nozell S, Xiao H, et al. DeltaNp73beta is active in transactivation and growth suppression. Mol Cell Biol, 2004, 24(2): 487-501.
- 27. Farid NR, Shi Y, Zou M. Molecular basis of thyroid cancer. Endocr Rev, 1994, 15(2): 202-232.
- 28. Hollstein M, Hergenhahn M, Yang Q, et al. New approaches to understanding p53 gene tumor mutation spectra. Mutat Res, 1999, 431(2): 199-209.
- 29. Takeuchi Y, Daa T, Kashima K, et al. Mutations of p53 in thyroid carcinoma with an insular component. Thyroid, 1999, 9(4): 377-381.
- 30. Quiros RM, Ding HG, Gattuso P, et al. Evidence that one subset of anaplastic thyroid carcinomas are derived from papillary carcinomas due to BRAF and p53 mutations. Cancer, 2005, 103(11): 2261-2268.
- 31. Dobashi Y, Sugimura H, Sakamoto A, et al. Stepwise participation of p53 gene mutation during dedifferentiation of human thyroid carcinomas. Diagn Mol Pathol, 1994, 3(1): 9-14.
- 32. Ho YS, Tseng SC, Chin TY, et al. p53 gene mutation in thyroid carcinoma. Cancer Lett, 1996, 103(1): 57-63.
- 33. Bernard H, Garmy-Susini B, Ainaoui N, et al. The p53 isoform, Δ133p53α, stimulates angiogenesis and tumour progression. Oncogene, 2013, 32(17): 2150-2160.
- 34. Cancer Genome Atlas Research Network. Integrated genomic characterization of papillary thyroid carcinoma. Cell, 2014, 159(3): 676-690.
- 35. Dralle H, Machens A, Basa J, et al. Follicular cell-derived thyroid cancer. Nat Rev Dis Primers, 2015, 1: 15077.
- 36. Moretti F, Farsetti A, Soddu S, et al. p53 re-expression inhibits proliferation and restores differentiation of human thyroid anaplastic carcinoma cells. Oncogene, 1997, 14(6): 729-740.
- 37. Fagin JA, Tang SH, Zeki K, et al. Reexpression of thyroid peroxidase in a derivative of an undifferentiated thyroid carcinoma cell line by introduction of wild-type p53. Cancer Res, 1996, 56(4): 765-771.
- 38. La Perle KM, Jhiang SM, Capen CC. Loss of p53 promotes anaplasia and local invasion in ret/PTC1-induced thyroid carcinomas. Am J Pathol, 2000, 157(2): 671-677.
- 39. Powell DJ Jr, Russell JP, Li G, et al. Altered gene expression in immunogenic poorly differentiated thyroid carcinomas from RET/PTC3p53-/- mice. Oncogene, 2001, 20(25): 3235-3246.
- 40. Nikiforov YE, Nikiforova MN, Gnepp DR, et al. Prevalence of mutations of ras and p53 in benign and malignant thyroid tumors from children exposed to radiation after the Chernobyl nuclear accident. Oncogene, 1996, 13(4): 687-693.
- 41. Marine JC, Dyer MA, Jochemsen AG. MDMX: from bench to bedside. J Cell Sci, 2007, 120(Pt 3): 371-378.
- 42. Marine JC, Francoz S, Maetens M, et al. Keeping p53 in check: essential and synergistic functions of Mdm2 and Mdm4. Cell Death Differ, 2006, 13(6): 927-934.
- 43. Prodosmo A, Giglio S, Moretti S, et al. Analysis of human MDM4 variants in papillary thyroid carcinomas reveals new potential markers of cancer properties. J Mol Med (Berl), 2008, 86(5): 585-596.
- 44. Lavra L, Ulivieri A, Rinaldo C, et al. Gal-3 is stimulated by gain-of-function p53 mutations and modulates chemoresistance in anaplastic thyroid carcinomas. J Pathol, 2009, 218(1): 66-75.
- 45. Lavra L, Rinaldo C, Ulivieri A, et al. The loss of the p53 activator HIPK2 is responsible for galectin-3 overexpression in well differentiated thyroid carcinomas. PLoS One, 2011, 6(6): e20665.
- 46. Sansal I, Sellers WR. The biology and clinical relevance of the PTEN tumor suppressor pathway. J Clin Oncol, 2004, 22(14): 2954-2963.
- 47. Stambolic V, MacPherson D, Sas D, et al. Regulation of PTEN transcription by p53. Mol Cell, 2001, 8(2): 317-325.
- 48. Tang Y, Eng C. PTEN autoregulates its expression by stabilization of p53 in a phosphatase-independent manner. Cancer Res, 2006, 66(2): 736-742.
- 49. Freedman DA, Wu L, Levine AJ. Functions of the MDM2 oncoprotein. Cell Mol Life Sci, 1999, 55(1): 96-107.
- 50. Malaguarnera R, Mandarino A, Mazzon E, et al. The p53-homologue p63 may promote thyroid cancer progression. Endocr Relat Cancer, 2005, 12(4): 953-971.
- 51. Melino G. p63 is a suppressor of tumorigenesis and metastasis interacting with mutant p53. Cell Death Differ, 2011, 18(9): 1487-1499.
- 52. Bonzanini M, Amadori PL, Sagramoso C, et al. Expression of cytokeratin 19 and protein p63 in fine needle aspiration biopsy of papillary thyroid carcinoma. Acta Cytol, 2008, 52(5): 541-548.
- 53. Su X, Chakravarti D, Flores ER. p63 steps into the limelight: crucial roles in the suppression of tumorigenesis and metastasis. Nat Rev Cancer, 2013, 13(2): 136-143.
- 54. Candi E, Rufini A, Terrinoni A, et al. DeltaNp63 regulates thymic development through enhanced expression of FgfR2 and Jag2. Proc Natl Acad Sci U S A, 2007, 104(29): 11999-12004.
- 55. Schwartz DI, Lindor NM, Walsh-Vockley C, et al. p73 mutations are not detected in sporadic and hereditary breast cancer. Breast Cancer Res Treat, 1999, 58(1): 25-29.
- 56. Kovalev S, Marchenko N, Swendeman S, et al. Expression level, allelic origin, and mutation analysis of the p73 gene in neuroblastoma tumors and cell lines. Cell Growth Differ, 1998, 9(11): 897-903.
- 57. Freebern WJ, Smith JL, Chaudhry SS, et al. Novel cell-specific and dominant negative anti-apoptotic roles of p73 in transformed leukemia cells. J Biol Chem, 2003, 278(4): 2249-2255.
- 58. Domínguez G, García JM, Peña C, et al. DeltaTAp73 upregulation correlates with poor prognosis in human tumors: putative in vivo network involving p73 isoforms, p53, and E2F-1. J Clin Oncol, 2006, 24(5): 805-815.
- 59. Ferru A, Denis S, Guilhot J, et al. Expression of TAp73 and deltaNp73 isoform transcripts in thyroid tumours. Eur J Surg Oncol, 2006, 32(2): 228-230.
- 60. Ito Y, Uramoto H, Funa K, et al. Delta Np73 expression in thyroid neoplasms originating from follicular cells. Pathology, 2006, 38(3): 205-209.
- 61. Frasca F, Vella V, Aloisi A, et al. p73 tumor-suppressor activity is impaired in human thyroid cancer. Cancer Res, 2003, 63(18): 5829-5837.
- 62. Melino G, De Laurenzi V, Vousden KH. p73: Friend or foe in tumorigenesis. Nat Rev Cancer, 2002, 2(8): 605-615.
- 63. Deyoung MP, Ellisen LW. p63 and p73 in human cancer: defining the network. Oncogene, 2007, 26(36): 5169-5183.
- 64. Ferraiuolo M, Di Agostino S, Blandino G, et al. Oncogenic intra-p53 family member interactions in human cancers. Front Oncol, 2016, 6: 77.