1. |
Galluzzi L, Bravo-San Pedro JM, Vitale I, et al. Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ, 2015, 22(1): 58-73.
|
2. |
Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell, 2012, 149(5): 1060-1072.
|
3. |
Hentze MW, Muckenthaler MU, Galy B, et al. Two to tango: regulation of mammalian iron metabolism. Cell, 2010, 142(1): 24-38.
|
4. |
Shen Z, Liu T, Li Y, et al. Fenton-reaction-acceleratable magnetic nanoparticles for ferroptosis therapy of orthotopic brain tumors. ACS Nano, 2018, 12(11): 11355-11365.
|
5. |
中华人民共和国国家卫生健康委员会医政医管局. 原发性肝癌诊疗规范(2019年版). 中国实用外科杂志, 2020, 40(2): 121-138.
|
6. |
Dimri M, Satyanarayana A. Molecular signaling pathways and therapeutic targets in hepatocellular carcinoma. Cancers (Basel), 2020, 12(2): 491. doi: 10.3390/cancers12020491.
|
7. |
Schwabe RF, Luedde T. Apoptosis and necroptosis in the liver: a matter of life and death. Nat Rev Gastroenterol Hepatol, 2018, 15(12): 738-752.
|
8. |
Gong Y, Fan Z, Luo G, et al. The role of necroptosis in cancer biology and therapy. Mol Cancer, 2019, 18(1): 100. doi: 10.1186/s12943-019-1029-8.
|
9. |
Allaire M, Rautou PE, Codogno P, et al. Autophagy in liver diseases: Time for translation? J Hepatol, 2019, 70(5): 985-998.
|
10. |
Miotto G, Rossetto M, Di Paolo ML, et al. Insight into the mechanism of ferroptosis inhibition by ferrostatin-1. Redox Biol, 2020, 28: 101328. doi: 10.1016/j.redox.2019.101328.
|
11. |
Louandre C, Marcq I, Bouhlal H, et al. The retinoblastoma (Rb) protein regulates ferroptosis induced by sorafenib in human hepatocellular carcinoma cells. Cancer Lett, 2015, 356(2PtB): 971-977.
|
12. |
Wang J, Shanmugam A, Markand S, et al. Sigma 1 receptor regulates the oxidative stress response in primary retinal Müller glial cells via NRF2 signaling and system xc-, the Na+-independent glutamate-cystine exchanger. Free Radic Biol Med, 2015, 86: 25-36.
|
13. |
Pal A, Fontanilla D, Gopalakrishnan A, et al. The sigma-1 receptor protects against cellular oxidative stress and activates antioxidant response elements. Eur J Pharmacol, 2012, 682(1-3): 12-20.
|
14. |
Bai T, Lei P, Zhou H, et al. Sigma-1 receptor protects against ferroptosis in hepatocellular carcinoma cells. J Cell Mol Med, 2019, 23(11): 7349-7359.
|
15. |
Patel SJ, Frey AG, Palenchar DJ, et al. A PCBP1-BolA2 chaperone complex delivers iron for cytosolic [2Fe-2S] cluster assembly. Nat Chem Biol, 2019, 15(9): 872-881.
|
16. |
Protchenko O, Baratz E, Jadhav S, et al. Iron chaperone poly rC binding protein 1 protects mouse liver from lipid peroxidation and steatosis. Hepatology, 2021, 73(3): 1176-1193.
|
17. |
Zhang J, Zhang X, Li J, et al. Systematic analysis of the ABC transporter family in hepatocellular carcinoma reveals the importance of ABCB6 in regulating ferroptosis. Life Sci, 2020, 257: 118131. doi: 10.1016/j.lfs.2020.118131.
|
18. |
Yuan H, Li X, Zhang X, et al. CISD1 inhibits ferroptosis by protection against mitochondrial lipid peroxidation. Biochem Biophys Res Commun, 2016, 478(2): 838-844.
|
19. |
Wang L, Cai H, Hu Y, et al. A pharmacological probe identifies cystathionine β-synthase as a new negative regulator for ferroptosis. Cell Death Dis, 2018, 9(10): 1005. doi: 10.1038/s41419-018-1063-2.
|
20. |
Yang Y, Lin J, Guo S, et al. RRM2 protects against ferroptosis and is a tumor biomarker for liver cancer. Cancer Cell Int, 2020, 20(1): 587. doi: 10.1186/s12935-020-01689-8.
|
21. |
Wang Q, Guo Y, Wang W, et al. RNA binding protein DAZAP1 promotes HCC progression and regulates ferroptosis by interacting with SLC7A11 mRNA. Exp Cell Res, 2021, 399(1): 112453. doi: 10.1016/j.yexcr.2020.112453.
|
22. |
Dai C, Chen X, Li J, et al. Transcription factors in ferroptotic cell death. Cancer Gene Ther, 2020, 27(9): 645-656.
|
23. |
Bai T, Wang S, Zhao Y, et al. Haloperidol, a sigma receptor 1 antagonist, promotes ferroptosis in hepatocellular carcinoma cells. Biochem Biophys Res Commun, 2017, 491(4): 919-925.
|
24. |
Ou W, Mulik RS, Anwar A, et al. Low-density lipoprotein docosahexaenoic acid nanoparticles induce ferroptotic cell death in hepatocellular carcinoma. Free Radic Biol Med, 2017, 112: 597-607.
|
25. |
Tang H, Chen D, Li C, et al. Dual GSH-exhausting sorafenib loaded manganese-silica nanodrugs for inducing the ferroptosis of hepatocellular carcinoma cells. Int J Pharm, 2019, 572: 118782. doi: 10.1016/j.ijpharm.2019.118782.
|
26. |
Qi W, Li Z, Xia L, et al. LncRNA GABPB1-AS1 and GABPB1 regulate oxidative stress during erastin-induced ferroptosis in HepG2 hepatocellular carcinoma cells. Sci Rep, 2019, 9(1): 16185. doi: 10.1038/s41598-019-52837-8.
|
27. |
Orso F, Quirico L, Dettori D, et al. Role of miRNAs in tumor and endothelial cell interactions during tumor progression. Semin Cancer Biol, 2020, 60: 214-224.
|
28. |
Bai T, Liang R, Zhu R, et al. MicroRNA-214-3p enhances erastin-induced ferroptosis by targeting ATF4 in hepatoma cells. J Cell Physiol, 2020, 235(7-8): 5637-5648.
|
29. |
Babu KR, Muckenthaler MU. miR-148a regulates expression of the transferrin receptor 1 in hepatocellular carcinoma. Sci Rep, 2019, 9(1): 1518. doi: 10.1038/s41598-018-35947-7.
|
30. |
Xu Q, Zhou L, Yang G, et al. CircIL4R facilitates the tumorigenesis and inhibits ferroptosis in hepatocellular carcinoma by regulating the miR-541-3p/GPX4 axis. Cell Biol Int, 2020, 44(11): 2344-2356.
|
31. |
Jiang L, Kon N, Li T, et al. Ferroptosis as a p53-mediated activity during tumour suppression. Nature, 2015, 520(7545): 57-62.
|
32. |
Ou Y, Wang SJ, Li D, et al. Activation of SAT1 engages polyamine metabolism with p53-mediated ferroptotic responses. Proc Natl Acad Sci U S A, 2016, 113(44): E6806-E6812. doi: 10.1073/pnas.1607152113.
|
33. |
Xie Y, Zhu S, Song X, et al. The Tumor suppressor p53 limits ferroptosis by blocking DPP4 activity. Cell Rep, 2017, 20(7): 1692-1704.
|
34. |
Leu JI, Murphy ME, George DL. Mechanistic basis for impaired ferroptosis in cells expressing the African-centric S47 variant of p53. Proc Natl Acad Sci U S A, 2019, 116(17): 8390-8396.
|
35. |
Sun X, Ou Z, Chen R, et al. Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology, 2016, 63(1): 173-184.
|
36. |
Vasan N, Baselga J, Hyman DM. A view on drug resistance in cancer. Nature, 2019, 575(7782): 299-309.
|
37. |
Oikawa T. Cancer Stem cells and their cellular origins in primary liver and biliary tract cancers. Hepatology, 2016, 64(2): 645-651.
|
38. |
Yang L, Shi P, Zhao G, et al. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther, 2020, 5(1): 8. doi: 10.1038/s41392-020-0110-5.
|
39. |
Friedmann Angeli JP, Krysko DV, Conrad M. Ferroptosis at the crossroads of cancer-acquired drug resistance and immune evasion. Nat Rev Cancer, 2019, 19(7): 405-414.
|
40. |
Taylor WR, Fedorka SR, Gad I, et al. Small-molecule ferroptotic agents with potential to selectively target cancer stem cells. Sci Rep, 2019, 9(1): 5926. doi: 10.1038/s41598-019-42251-5.
|
41. |
Hata AN, Niederst MJ, Archibald HL, et al. Tumor cells can follow distinct evolutionary paths to become resistant to epidermal growth factor receptor inhibition. Nat Med, 2016, 22(3): 262-269.
|
42. |
Jiang M, Qiao M, Zhao C, et al. Targeting ferroptosis for cancer therapy: exploring novel strategies from its mechanisms and role in cancers. Transl Lung Cancer Res, 2020, 9(4): 1569-1584.
|
43. |
Hangauer MJ, Viswanathan VS, Ryan MJ, et al. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature, 2017, 551(7679): 247-250.
|
44. |
Sun X, Niu X, Chen R, et al. Metallothionein-1G facilitates sorafenib resistance through inhibition of ferroptosis. Hepatology, 2016, 64(2): 488-500.
|
45. |
Louandre C, Ezzoukhry Z, Godin C, et al. Iron-dependent cell death of hepatocellular carcinoma cells exposed to sorafenib. Int J Cancer, 2013, 133(7): 1732-1742.
|
46. |
Sehm T, Rauh M, Wiendieck K, et al. Temozolomide toxicity operates in a xCT/SLC7a11 dependent manner and is fostered by ferroptosis. Oncotarget, 2016, 7(46): 74630-74647.
|
47. |
Wu J, Minikes AM, Gao M, et al. Intercellular interaction dictates cancer cell ferroptosis via NF2-YAP signalling. Nature, 2019, 572(7769): 402-406.
|
48. |
Lin PL, Tang HH, Wu SY, et al. Saponin formosanin C-induced ferritinophagy and ferroptosis in human hepatocellular carcinoma cells. Antioxidants (Basel), 2020, 9(8): 682. doi: 10.3390/antiox9080682.
|
49. |
Xiong Y, Xiao C, Li Z, et al. Engineering nanomedicine for glutathione depletion-augmented cancer therapy. Chem Soc Rev, 2021, 50(10): 6013-6041.
|
50. |
Lippmann J, Petri K, Fulda S, et al. Redox modulation and induction of ferroptosis as a new therapeutic strategy in hepatocellular carcinoma. Transl Oncol, 2020, 13(8): 100785. doi: 10.1016/j.tranon.2020.100785.
|
51. |
Wang W, Green M, Choi JE, et al. CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy. Nature, 2019, 569(7755): 270-274.
|
52. |
Deng T, Hu B, Jin C, et al. A novel ferroptosis phenotype-related clinical-molecular prognostic signature for hepatocellular carcinoma. J Cell Mol Med, 2021, 25(14): 6618-6633.
|
53. |
Liu Z, Wang L, Liu L, et al. The identification and validation of two heterogenous subtypes and a risk signature based on ferroptosis in hepatocellular carcinoma. Front Oncol, 2021, 11: 619242. doi: 10.3389/fonc.2021.619242.
|
54. |
Liang JY, Wang DS, Lin HC, et al. A novel ferroptosis-related gene signature for overall survival prediction in patients with hepatocellular carcinoma. Int J Biol Sci, 2020, 16(13): 2430-2441.
|
55. |
Du X, Zhang Y. Integrated analysis of immunity- and ferroptosis-related biomarker signatures to improve the prognosis prediction of hepatocellular carcinoma. Front Genet, 2020, 11: 614888. doi: 10.3389/fgene.2020.614888.
|