1. |
Chaufour X, Gaudric J, Goueffic Y, et al. A multicenter experience with infected abdominal aortic endograft explantation. J Vasc Surg, 2017, 65(2): 372-380.
|
2. |
Ducasse E, Calisti A, Speziale F, et al. Aortoiliac stent graft infection: current problems and management. Ann Vasc Surg, 2004, 18(5): 521-526.
|
3. |
Sorber R, Osgood MJ, Abularrage CJ, et al. Treatment of aortic graft infection in the endovascular era. Curr Infect Dis Rep, 2017, 19(11): 40. doi: 10.1007/s11908-017-0598-1.
|
4. |
Goodman SB, Gallo J. Periprosthetic osteolysis: mechanisms, prevention and treatment. J Clin Med, 2019, 8(12): 2091. doi: 10.3390/jcm8122091.
|
5. |
李芳, 吴可通, 赵珺, 等. 血管支架及其在动脉瘤治疗中的发展趋势. 中国组织工程研究, 2021, 25(34): 5561-5569.
|
6. |
Bangalore S, Kumar S, Fusaro M, et al. Short- and long-term outcomes with drug-eluting and bare-metal coronary stents: a mixed-treatment comparison analysis of 117 762 patient-years of follow-up from randomized trials. Circulation, 2012, 125(23): 2873-2891.
|
7. |
Fu J, Su Y, Qin YX, et al. Evolution of metallic cardiovascular stent materials: a comparative study among stainless steel, magnesium and zinc. Biomaterials, 2020, 230: 119641. doi: 10.1016/j.biomaterials.2019.119641.
|
8. |
Liang Q, Ge S, Liu C, et al. The effect of composite PHB coating on the biological properties of a magnesium based alloy. J Biomater Appl, 2021, 35(10): 1264-1274.
|
9. |
Wlodarczak A, Montorsi P, Torzewski J, et al. One- and two-year clinical outcomes of treatment with resorbable magnesium scaffolds for coronary artery disease: the prospective, international, multicentre BIOSOLVE-Ⅳ registry. EuroIntervention, 2023, 19(3): 232-239.
|
10. |
Zhu J, Zhang X, Niu J, et al. Biosafety and efficacy evaluation of a biodegradable magnesium-based drug-eluting stent in porcine coronary artery. Sci Rep, 2021, 11(1): 7330. doi: 10.1038/s41598-021-86803-0.
|
11. |
Su Y, Cockerill I, Wang Y, et al. Zinc-based biomaterials for regeneration and therapy. Trends Biotechnol, 2019, 37(4): 428-441.
|
12. |
Xiang Y, Mao C, Liu X, et al. Rapid and superior bacteria killing of carbon quantum dots/ZnO decorated injectable folic acid-conjugated PDA hydrogel through dual-light triggered ROS and membrane permeability. Small, 2019, 15(22): e1900322. doi: 10.1002/smll.201900322.
|
13. |
Abdelkader DH, Negm WA, Elekhnawy E, et al. Zinc oxide nanoparticles as potential delivery carrier: green synthesis by aspergillus niger endophytic fungus, characterization, and in vitro/ in vivo antibacterial activity. Pharmaceuticals (Basel), 2022, 15(9): 1057. doi: 10.3390/ph15091057.
|
14. |
Shearier ER, Bowen PK, He W, et al. In vitro cytotoxicity, adhesion, and proliferation of human vascular cells exposed to zinc. ACS Biomater Sci Eng, 2016, 2(4): 634-642.
|
15. |
Owhal A, Choudhary M, Pingale AD, et al. Non-cytotoxic zinc/f-graphene nanocomposite for tunable degradation and superior tribo-mechanical properties: synthesized via modified electro co-deposition route. Mater Today Commun, 2023, 34: 105112.
|
16. |
Reddy MSB, Ponnamma D, Choudhary R, et al. A comparative review of natural and synthetic biopolymer composite scaffolds. Polymers (Basel), 2021, 13(7): 1105. doi: 10.3390/polym13071105.
|
17. |
Wahba MI. Enhancement of the mechanical properties of chitosan. J Biomater Sci Polym Ed, 2020, 31(3): 350-375.
|
18. |
Severino R, Vu KD, Donsì F, et al. Antibacterial and physical effects of modified chitosan based-coating containing nanoemulsion of mandarin essential oil and three non-thermal treatments against Listeria innocua in green beans. Int J Food Microbiol, 2014, 191: 82-88.
|
19. |
Sun W, Zhang Y, Gregory DA, et al. Patterning the neuronal cells via inkjet printing of self-assembled peptides on silk scaffolds. Prog Nat Sci-Mater, 2020, 30(5): 686-696.
|
20. |
Song W, Muthana M, Mukherjee J, et al. Magnetic-silk core-shell nanoparticles as potential carriers for targeted delivery of curcumin into human breast cancer cells. ACS Biomater Sci Eng, 2017, 3(6): 1027-1038.
|
21. |
Zhang C, Zhang Y, Shao H, et al. Hybrid silk fibers dry-spun from regenerated silk fibroin/graphene oxide aqueous solutions. ACS Appl Mater Interfaces, 2016, 8(5): 3349-3358.
|
22. |
Melke J, Midha S, Ghosh S, et al. Silk fibroin as biomaterial for bone tissue engineering. Acta Biomater, 2016, 31: 1-16.
|
23. |
Zhao C, Deng B, Chen G, et al. Large-area chemical vapor deposition-grown monolayer graphene-wrapped silver nanowires for broad-spectrum and robust antimicrobial coating. Nano Research, 2016, 9(4): 963-973.
|
24. |
Tsugawa T, Hatakeyama K, Matsuda J, et al. Synthesis of oxygen functional group-controlled monolayer graphene oxide. Bulletin of the Chemical Society of Japan, 2021, 94(9): 2195-2201.
|
25. |
Hu W, Peng C, Luo W, et al. Graphene-based antibacterial paper. ACS Nano, 2010, 4(7): 4317-4323.
|
26. |
Misra SK, Ostadhossein F, Babu R, et al. 3D-printed multidrug-eluting stent from graphene-nanoplatelet-doped biodegradable polymer composite. Adv Healthc Mater, 2017, 6(11). doi: 10.1002/adhm.201700008.
|
27. |
Pan C, Zhao Y, Yang Y, et al. Immobilization of bioactive complex on the surface of magnesium alloy stent material to simultaneously improve anticorrosion, hemocompatibility and antibacterial activities. Colloids Surf B Biointerfaces, 2021, 199: 111541. doi: 10.1016/j.colsurfb.2020.111541.
|
28. |
Yang MC, Tsou HM, Hsiao YS, et al. Electrochemical polymerization of PEDOT-graphene oxide-heparin composite coating for anti-fouling and anti-clotting of cardiovascular stents. Polymers (Basel), 2019, 11(9): 1520. doi: 10.3390/polym11091520.
|
29. |
ElSawy AM, Attia NF, Mohamed HI, et al. Innovative coating based on graphene and their decorated nanoparticles for medical stent applications. Mater Sci Eng C Mater Biol Appl, 2019, 96: 708-715.
|
30. |
Wang Y, Zhang W, Zhang J, et al. Fabrication of a novel polymer-free nanostructured drug-eluting coating for cardiovascular stents. ACS Appl Mater Interfaces, 2013, 5(20): 10337-10345.
|
31. |
Chen R, Huang C, Ke Q, et al. Preparation and characterization of coaxial electrospun thermoplastic polyurethane/collagen compound nanofibers for tissue engineering applications. Colloids Surf B Biointerfaces, 2010, 79(2): 315-325.
|
32. |
Villani M, Consonni R, Canetti M, et al. Polyurethane-based composites: effects of antibacterial fillers on the physical-mechanical behavior of thermoplastic polyurethanes. Polymers (Basel), 2020, 12(2): 362. doi: 10.3390/polym12020362.
|
33. |
Wang HJ, Hao MF, Wang G, et al. Zein nanospheres assisting inorganic and organic drug combination to overcome stent implantation-induced thrombosis and infection. Sci Total Environ, 2023, 873: 162438. doi: 10.1016/j.scitotenv.2023.162438.
|
34. |
Lu Z, Wu Y, Cong Z, et al. Effective and biocompatible antibacterial surfaces via facile synthesis and surface modification of peptide polymers. Bioact Mater, 2021, 6(12): 4531-4541.
|
35. |
Wilson AC, Chou SF, Lozano R, et al. Thermal and physico-mechanical characterizations of thromboresistant polyurethane films. Bioengineering (Basel), 2019, 6(3): 69. doi: 10.3390/bioengineering6030069.
|
36. |
Hamad K, Kaseem M, Ayyoob M, et al. Polylactic acid blends: the future of green, light and tough. Prog Polym Sci, 2018, 85: 83-127.
|
37. |
Scaffaro R, Maio A, Sutera F, et al. Degradation and recycling of films based on biodegradable polymers: a short review. Polymers (Basel), 2019, 11(4): 651. doi: 10.3390/polym11040651.
|
38. |
Douglass M, Hopkins S, Pandey R, et al. S-nitrosoglutathione-based nitric oxide-releasing nanofibers exhibit dual antimicrobial and antithrombotic activity for biomedical applications. Macromol Biosci, 2021, 21(1): e2000248. doi: 10.1002/mabi.202000248.
|
39. |
魏雨, 张景迅, 范娟娟, 等. 心血管支架表面改性及应用. 生物医学工程学杂志, 2016, 33(3): 593-597, 608.
|
40. |
Xing X, Han Y, Cheng H. Biomedical applications of chitosan/silk fibroin composites: a review. Int J Biol Macromol, 2023, 240: 124407. doi: 10.1016/j.ijbiomac.2023.124407.
|
41. |
Li L, Wang X, Li D, et al. LBL deposition of chitosan/heparin bilayers for improving biological ability and reducing infection of nanofibers. Int J Biol Macromol, 2020, 154: 999-1006.
|
42. |
Katepetch C, Rujiravanit R, Tamura H. Formation of nanocrystalline ZnO particles into bacterial cellulose pellicle by ultrasonic-assisted in situ synthesis. Cellulose, 2013, 20(3): 1275-1292.
|
43. |
Yang G, Wang C, Hong F, et al. Preparation and characterization of BC/PAM-AgNPs nanocomposites for antibacterial applications. Carbohydr Polym, 2015, 115: 636-642.
|
44. |
Wang J, Wan Y, Huang Y. Immobilisation of heparin on bacterial cellulose-chitosan nano-fibres surfaces via the cross-linking technique. IET Nanobiotechnol, 2012, 6(2): 52-57.
|
45. |
Butchosa N, Brown C, Larsson PT, et al. Nanocomposites of bacterial cellulose nanofibers and chitin nanocrystals: fabrication, characterization and bactericidal activity. Green Chem, 2013, 15(12): 3404–3413.
|
46. |
Mufty H, Van Den Eynde J, Meuris B, et al. Pre-clinical in vitro models of vascular graft coating in the prevention of vascular graft infection: a systematic review. Eur J Vasc Endovasc Surg, 2022, 63(1): 119-137.
|
47. |
Khan K, Javed S. Functionalization of inorganic nanoparticles to augment antimicrobial efficiency: a critical analysis. Curr Pharm Biotechnol, 2018, 19(7): 523-536.
|
48. |
Spina CJ, Notarandrea-Alfonzo J, Hay M, et al. Silver oxynitrate gel formulation for enhanced stability and antibiofilm efficacy. Int J Pharm, 2020, 580: 119197. doi: 10.1016/j.ijpharm.2020.119197.
|
49. |
Durán N, Durán M, de Jesus MB, et al. Silver nanoparticles: a new view on mechanistic aspects on antimicrobial activity. Nanomedicine, 2016, 12(3): 789-799.
|
50. |
Morones JR, Elechiguerra JL, Camacho A, et al. The bactericidal effect of silver nanoparticles. Nanotechnology, 2005, 16(10): 2346-2353.
|
51. |
Sohn EK, Johari SA, Kim TG, et al. Aquatic toxicity comparison of silver nanoparticles and silver nanowires. Biomed Res Int, 2015, 2015: 893049. doi: 10.1155/2015/893049.
|
52. |
Shahverdi AR, Minaeian S, Shahverdi HR, et al. Rapid synthesis of silver nanoparticles using culture supernatants of enterobacteria: a novel biological approach. Process Biochemistry, 2007, 42(5): 919-923.
|
53. |
Senocak TC, Ezirmik KV, Cengiz S. The antibacterial properties and corrosion behavior of silver-doped niobium oxynitride coatings. Mater Today Commun, 2022, 32: 103975. doi: 10.1016/j.mtcomm.2022.103975.
|
54. |
Huang B, Jing F, Akhavan B, et al. Multifunctional Ti-xCu coatings for cardiovascular interfaces: control of microstructure and surface chemistry. Mater Sci Eng C Mater Biol Appl, 2019, 104: 109969. doi: 10.1016/j.msec.2019.109969.
|
55. |
Ren Q, Qin L, Jing F, et al. Reactive magnetron co-sputtering of Ti-xCuO coatings: multifunctional interfaces for blood-contacting devices. Mater Sci Eng C Mater Biol Appl, 2020, 116: 111198. doi: 10.1016/j.msec.2020.111198.
|
56. |
He X, Zhang G, Zhang H, et al. Cu and Si co-doped microporous TiO2 coating for osseointegration by the coordinated stimulus action. Appl Surf Sci, 2020, 503: 144072. doi:10.1016/j.apsusc.2019.144072.
|
57. |
Zhang X, Li J, Wang X, et al. Effects of copper nanoparticles in porous TiO2 coatings on bacterial resistance and cytocompatibility of osteoblasts and endothelial cells. Mater Sci Eng C Mater Biol Appl, 2018, 82: 110-120.
|
58. |
Liu R, Tang Y, Liu H, et al. Effects of combined chemical design (Cu addition) and topographical modification (SLA) of Ti-Cu/SLA for promoting osteogenic, angiogenic and antibacterial activities. J Mater Sci Technol, 2020, 47: 202-215.
|
59. |
Liu H, Zhang X, Jin S, et al. Effect of copper-doped titanium nitride coating on angiogenesis. Materials Letters, 2020, 269: 127634. doi: 10.1016/j.matlet.2020.127634.
|
60. |
Zhang Y, Cui S, Cao S, et al. To improve the angiogenesis of endothelial cells on Ti-Cu alloy by the synergistic effects of Cu ions release and surface nanostructure. Surf Coat Tech, 2022, 433: 128116. doi: 10.1016/j.surfcoat.2022.128116.
|
61. |
Zhao X, Cai D, Hu J, et al. A high-hydrophilic Cu2O-TiO2/Ti2O3/TiO coating on Ti-5Cu alloy: perfect antibacterial property and rapid endothelialization potential. Biomater Adv, 2022, 140: 213044. doi: 10.1016/j.bioadv.2022.213044.
|
62. |
Liu Y, Luo W, Yang H, et al. Stimulation of nitric oxide production contributes to the antiplatelet and antithrombotic effect of new peptide pENW (pGlu-Asn-Trp). Thromb Res, 2015, 136(2): 319-327.
|
63. |
Vahora H, Khan MA, Alalami U, et al. The potential role of nitric oxide in halting cancer progression through chemoprevention. J Cancer Prev, 2016, 21(1): 1-12.
|
64. |
Wang X, Jolliffe A, Carr B, et al. Nitric oxide-releasing semi-crystalline thermoplastic polymers: preparation, characterization and application to devise anti-inflammatory and bactericidal implants. Biomater Sci, 2018, 6(12): 3189-3201.
|
65. |
Friedman A, Blecher K, Sanchez D, et al. Susceptibility of Gram-positive and -negative bacteria to novel nitric oxide-releasing nanoparticle technology. Virulence, 2011, 2(3): 217-221.
|
66. |
Wang L, Hou Z, Pranantyo D, et al. High-density three-dimensional network of covalently linked nitric oxide donors to achieve antibacterial and antibiofilm surfaces. ACS Appl Mater Interfaces, 2021, 13(29): 33745-33755.
|
67. |
Aboshady I, Raad I, Vela D, et al. Prevention of perioperative vascular prosthetic infection with a novel triple antimicrobial-bonded arterial graft. J Vasc Surg, 2016, 64(6): 1805-1814.
|
68. |
Talapko J, Meštrović T, Juzbašić M, et al. Antimicrobial peptides-mechanisms of action, antimicrobial effects and clinical applications. Antibiotics (Basel), 2022, 11(10): 1417. doi: 10.3390/antibiotics11101417.
|
69. |
Ma L, Xie X, Liu H, et al. Potent antibacterial activity of MSI-1 derived from the magainin 2 peptide against drug-resistant bacteria. Theranostics, 2020, 10(3): 1373-1390.
|
70. |
Ong ZY, Wiradharma N, Yang YY. Strategies employed in the design and optimization of synthetic antimicrobial peptide amphiphiles with enhanced therapeutic potentials. Adv Drug Deliv Rev, 2014, 78: 28-45.
|
71. |
Gomes B, Augusto MT, Felício MR, et al. Designing improved active peptides for therapeutic approaches against infectious diseases. Biotechnol Adv, 2018, 36(2): 415-429.
|
72. |
Rima M, Rima M, Fajloun Z, et al. Antimicrobial peptides: a potent alternative to antibiotics. Antibiotics (Basel), 2021, 10(9): 1095. doi: 10.3390/antibiotics10091095.
|
73. |
Hale JD, Hancock RE. Alternative mechanisms of action of cationic antimicrobial peptides on bacteria. Expert Rev Anti Infect Ther, 2007, 5(6): 951-959.
|
74. |
Kang X, Dong F, Shi C, et al. DRAMP 2.0, an updated data repository of antimicrobial peptides. Sci Data, 2019, 6(1): 148. doi: 10.1038/s41597-019-0154-y.
|
75. |
Matthyssen T, Li W, Holden JA, et al. The potential of modified and multimeric antimicrobial peptide materials as superbug killers. Front Chem, 2022, 9: 795433. doi: 10.3389/fchem.2021.795433.
|
76. |
Oyama LB, Olleik H, Teixeira ACN, et al. In silico identification of two peptides with antibacterial activity against multidrug-resistant Staphylococcus aureus. NPJ Biofilms Microbiomes, 2022, 8(1): 58. doi: 10.1038/s41522-022-00320-0.
|
77. |
Ramalho SR, de Cássia Orlandi Sardi J, Júnior EC, et al. The synthetic antimicrobial peptide IKR18 displays anti-infectious properties in Galleria mellonella in vivo model. Biochim Biophys Acta Gen Subj, 2022, 1866(12): 130244. doi: 10.1016/j.bbagen.2022.130244.
|
78. |
Alwine S, Chen C, Shen L, et al. Crosslinkable fluorophenoxy-substituted poly[bis(octafluoropentoxy) phosphazene] biomaterials with improved antimicrobial effect and hemocompatibility. J Biomed Mater Res B Appl Biomater, 2023, 111(8): 1533-1545.
|
79. |
Chen CQ, Li ZS, Li XZ, et al. Dual-functional antimicrobial coating based on the combination of zwitterionic and quaternary ammonium cation from rosin acid. Compos Part B-Eng, 2022, 232: 109623. doi: 10.1016/j.compositesb.2022.109623.
|
80. |
Bouloussa H, Saleh-mghir A, Valotteau C, et al. A graftable quaternary ammonium biocidal polymer reduces biofilm formation and ensures biocompatibility of medical devices.Adv Mater Interfaces, 2021, 8(5): 2001516. doi: 10.1002/admi.202001516.
|
81. |
Janković A, Eraković S, Ristoscu C, et al. Structural and biological evaluation of lignin addition to simple and silver-doped hydroxyapatite thin films synthesized by matrix-assisted pulsed laser evaporation. J Mater Sci Mater Med, 2015, 26(1): 5333. doi: 10.1007/s10856-014-5333-y.
|
82. |
Saratale RG, Saratale GD, Ghodake G, et al. Wheat straw extracted lignin in silver nanoparticles synthesis: expanding its prophecy towards antineoplastic potency and hydrogen peroxide sensing ability. Int J Biol Macromol, 2019, 128: 391-400.
|
83. |
Yan Y, Zhang L, Zhao X, et al. Utilization of lignin upon successive fractionation and esterification in polylactic acid (PLA)/lignin biocomposite. Int J Biol Macromol, 2022, 203: 49-57.
|
84. |
Cloutier M, Mantovani D, Rosei F. Antibacterial coatings: challenges, perspectives, and opportunities. Trends Biotechnol, 2015, 33(11): 637-652.
|
85. |
Ajdnik U, Zemljič LF, Plohl O, et al. Bioactive functional nanolayers of chitosan-lysine surfactant with single- and mixed-protein-repellent and antibiofilm properties for medical implants. ACS Appl Mater Interfaces, 2021, 13(20): 23352-23368.
|