1. |
Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024. CA Cancer J Clin, 2024, 74(1): 12-49.
|
2. |
Llovet JM, Kelley RK, Villanueva A, et al. Hepatocellular carcinoma. Nat Rev Dis Primers, 2021, 7(1): 6.
|
3. |
姚一菲, 孙可欣, 郑荣寿. 《2022全球癌症统计报告》解读: 中国与全球对比. 中国普外基础与临床杂志, 2024, 31(07): 769-80.
|
4. |
Vogel A, Meyer T, Sapisochin G, et al. Hepatocellular carcinoma. Lancet, 2022, 400(10360): 1345-1362.
|
5. |
Ahn JC, Teng PC, Chen PJ, et al. Detection of Circulating Tumor Cells and Their Implications as a Biomarker for Diagnosis, Prognostication, and Therapeutic Monitoring in Hepatocellular Carcinoma. Hepatology, 2021, 73(1): 422-436.
|
6. |
Debes JD, Romagnoli PA, Prieto J, et al. Serum Biomarkers for the Prediction of Hepatocellular Carcinoma. Cancers (Basel), 2021, 13(7): 1681.
|
7. |
Tang D, Kroemer G. Ferroptosis. Curr Biol, 2020, 30(21): R1292-R1297.1292-1297.
|
8. |
Wang D, Tang L, Zhang Y, et al. Regulatory pathways and drugs associated with ferroptosis in tumors. Cell Death Dis, 2022, 13(6): 544.
|
9. |
Wang Q, Bin C, Xue Q, et al. GSTZ1 sensitizes hepatocellular carcinoma cells to sorafenib-induced ferroptosis via inhibition of NRF2/GPX4 axis. Cell Death Dis, 2021, 12(5): 426.
|
10. |
Gao R, Kalathur RKR, Coto-Llerena M, et al. YAP/TAZ and ATF4 drive resistance to Sorafenib in hepatocellular carcinoma by preventing ferroptosis. EMBO Mol Med, 2021, 13(12): e14351.
|
11. |
Li Q, Chen K, Zhang T, et al. Understanding sorafenib-induced ferroptosis and resistance mechanisms: Implications for cancer therapy. Eur J Pharmacol, 2023 Sep 15: 955: 175913.
|
12. |
Kong R, Wang N, Han W, et al. IFNγ-mediated repression of system xc drives vulnerability to induced ferroptosis in hepatocellular carcinoma cells. J Leukoc Biol, 2021, 110(2): 301-314.
|
13. |
Conche C, Finkelmeier F, Pešić M, et al. Combining ferroptosis induction with MDSC blockade renders primary tumours and metastases in liver sensitive to immune checkpoint blockade. Gut, 2023, 72(9): 1774-1782.
|
14. |
Liu X, Nie L, Zhang Y, et al. Actin cytoskeleton vulnerability to disulfide stress mediates disulfidptosis. Nat Cell Biol, 2023, 25(3): 404-414.
|
15. |
Zhao D, Meng Y, Dian Y, et al. Molecular landmarks of tumor disulfidptosis across cancer types to promote disulfidptosis-target therapy. Redox Biol, 2023 Dec: 68: 102966.
|
16. |
Wang Y, Jiang Y, Wei D, et al. Nanoparticle-mediated convection-enhanced delivery of a DNA intercalator to gliomas circumvents temozolomide resistance. Nat Biomed Eng, 2021, 5(9): 1048-1058.
|
17. |
Zhong L, Chang W, Luo B, et al. Development and validation of a disulfidptosis and disulfide metabolism-related risk index for predicting prognosis in lung adenocarcinoma. Cancer Cell Int, 2024, 24(1): 2.
|
18. |
Koppula P, Zhuang L, Gan B. Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy. Protein Cell, 2021, 12(8): 599-620.
|
19. |
Wang X, Chen Y, Wang X, et al. Stem Cell Factor SOX2 Confers Ferroptosis Resistance in Lung Cancer via Upregulation of SLC7A11. Cancer Res, 2021, 81(20): 5217-5229.
|
20. |
Ma X, Deng Z, Li Z, et al. Leveraging a disulfidptosis/ferroptosis-based signature to predict the prognosis of lung adenocarcinoma. Cancer Cell Int, 2023, 23(1): 267.
|
21. |
Xu L, Wang S, Zhang D, et al. Machine learning- and WGCNA-mediated double analysis based on genes associated with disulfidptosis, cuproptosis and ferroptosis for the construction and validation of the prognostic model for breast cancer. J Cancer Res Clin Oncol, 2023, 149(18): 16511-16523.
|
22. |
Hassanein M, Qian J, Hoeksema MD, et al. Targeting SLC1a5-mediated glutamine dependence in non-small cell lung cancer. Int J Cancer, 2015, 137(7): 1587-1597.
|
23. |
Han L, Zhou J, Li L, et al. SLC1A5 enhances malignant phenotypes through modulating ferroptosis status and immune microenvironment in glioma. Cell Death Dis, 2022, 13(12): 1071.
|
24. |
AHAMED A, HOSEA R, WU S, et al. The Emerging Roles of the Metabolic Regulator G6PD in Human Cancers [J]. Int J Mol Sci, 2023, 24(24). doi:10.3390/ijms242417238.
|
25. |
CUI J, WANG L, REN X, et al. LRPPRC: A Multifunctional Protein Involved in Energy Metabolism and Human Disease. Front Physiol, 2019, 10: 595. doi: 10.3389/fphys.2019.00595.
|
26. |
El-Khoueiry AB, Sangro B, Yau T, et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet, 2017, 389(10088): 2492-2502.
|
27. |
Hewitt DB, Rahnemai-Azar AA, Pawlik TM. Potential experimental immune checkpoint inhibitors for the treatment of cancer of the liver. Expert Opin Investig Drugs, 2021, 30(8): 827-835.
|
28. |
Lv B, Wang Y, Ma D, et al. Immunotherapy: Reshape the tumor immune microenvironment. Front Immunol, 2022, 13: 844142. doi: 10.3389/fimmu.2022.844142.
|
29. |
ZHOU J, DING T, PAN W, et al. Increased intratumoral regulatory T cells are related to intratumoral macrophages and poor prognosis in hepatocellular carcinoma patients. Int J Cancer, 2009, 125(7): 1640-8. doi: 10.1002/ijc.24556.
|
30. |
Fu J, Xu D, Liu Z, et al. Increased regulatory T cells correlate with CD8 T-cell impairment and poor survival in hepatocellular carcinoma patients. Gastroenterology, 2007, 132(7): 2328-2339.
|
31. |
Zecca A, Barili V, Olivani A, et al. Targeting Stress Sensor Kinases in Hepatocellular Carcinoma-Infiltrating Human NK Cells as a Novel Immunotherapeutic Strategy for Liver Cancer. Front Immunol, 2022 May 23: 13: 875072.
|
32. |
Li W, Huang X, Tong H, et al. Comparison of the regulation of β-catenin signaling by type I, type II and type III interferons in hepatocellular carcinoma cells. PLoS One, 2012, 7(10): e47040.
|
33. |
Cheung AH, Hui CH, Wong KY, et al. Out of the cycle: Impact of cell cycle aberrations on cancer metabolism and metastasis. Int J Cancer, 2023, 152(8): 1510-1525.
|
34. |
Makrilia N, Kollias A, Manolopoulos L, et al. Cell adhesion molecules: role and clinical significance in cancer. Cancer Invest, 2009, 27(10): 1023-1037.
|
35. |
Miyasaka M. Cancer metastasis and adhesion molecules. Clin Orthop Relat Res, 1995(312): 10-18.
|
36. |
Shinkawa H, Tanaka S, Kabata D, et al. The prognostic impact of tumor differentiation on recurrence and survival after resection of hepatocellular carcinoma is dependent on tumor size. Liver Cancer, 2021, 10(5): 461-472.
|
37. |
Kawamata H, Tachibana M, Fujimori T, et al. Differentiation-inducing therapy for solid tumors. Curr Pharm Des, 2006, 12(3): 379-385.
|
38. |
Uhlén M, Fagerberg L, Hallström BM, et al. Proteomics. Tissue-based map of the human proteome. Science, 2015, 347(6220): 1260419.
|