1. |
Hartung MP, Bickle IC, Gaillard F, et al. How to create a great radiology report. Radiographics, 2020, 40(6): 1658-1670.
|
2. |
Mityul MI, Gilcrease-Garcia B, Mangano MD, et al. Radiology reporting: Current practices and an introduction to patient-centered opportunities for improvement. AJR Am J Roentgenol, 2018, 210(2): 376-385.
|
3. |
van Ooijen P, Ranschaert ER, Trianni A, et al. Imaging informatics for healthcare professionals // Structured reporting in radiology. New York: Springer, 2022.
|
4. |
Teh SR, Ranguis S, Fagan P. Inter-observer variability between radiologists reporting on cerebellopontine angle tumours on magnetic resonance imaging. J Laryngol Otol, 2017, 131(S1): S47-S49. doi: 10.1017/S002221511600935X.
|
5. |
Quinn L, Tryposkiadis K, Deeks J, et al. Interobserver variability studies in diagnostic imaging: a methodological systematic review. Br J Radiol, 2023, 96(1148): 20220972. doi: 10.1259/bjr.20220972.
|
6. |
Shinagare AB, Lacson R, Boland GW, et al. Radiologist preferences, agreement, and variability in phrases used to convey diagnostic certainty in radiology reports. J Am Coll Radiol, 2019, 16(4 Pt A): 458-464.
|
7. |
Madan SS, Rai A, Harley JM. Interobserver error in interpretation of the radiographs for degeneration of the lumbar spine. Iowa Orthop J, 2003, 23: 51-56.
|
8. |
Gunn AJ, Tuttle MC, Flores EJ, et al. Differing interpretations of report terminology between primary care physicians and radiologists. J Am Coll Radiol, 2016, 13(12 Pt A): 1525-1529.
|
9. |
Khorasani R, Bates DW, Teeger S, et al. Is terminology used effectively to convey diagnostic certainty in radiology reports?. Acad Radiol, 2003, 10(6): 685-688.
|
10. |
European Society of Radiology (ESR). ESR paper on structured reporting in radiology. Insights Imaging, 2018, 9(1): 1-7.
|
11. |
Weiss DL, Bolos PR. Reporting and dictation // Branstetter B. Practical imaging informatics. New York: Springer, 2009.
|
12. |
Persigehl T, Baumhauer M, Baeßler B, et al. Structured reporting of solid and cystic pancreatic lesions in CT and MRI: Consensus-based structured report templates of the German Society of Radiology (DRG). Rofo, 2020, 192(7): 641-656.
|
13. |
Neri E, Granata V, Montemezzi S, et al. Structured reporting of X-ray mammography in the first diagnosis of breast cancer: a Delphi consensus proposal. Radiol Med, 2022, 127(5): 471-483.
|
14. |
Granata V, Morana G, D’Onofrio M, et al. Structured reporting of computed tomography and magnetic resonance in the staging of pancreatic adenocarcinoma: A Delphi consensus proposal. Diagnostics (Basel), 2021, 11(11): 2033. doi: 10.3390/diagnostics11112033.
|
15. |
Granata V, Faggioni L, Grassi R, et al. Structured reporting of computed tomography in the staging of colon cancer: a Delphi consensus proposal. Radiol Med, 2022, 127(1): 21-29.
|
16. |
中国医师协会结直肠肿瘤专业委员会诊疗技术专委会, 中华医学会放射学分会腹部学组. 直肠癌MR扫描及结构式报告规范专家共识. 中华放射学杂志, 2021, 55(11): 1121-1127.
|
17. |
Elmohr MM, Chernyak V, Sirlin CB, et al. Liver imaging reporting and data system comprehensive guide: MR imaging edition. Magn Reson Imaging Clin N Am, 2021, 29(3): 375-387.
|
18. |
Olthof AW, Leusveld ALM, de Groot JC, et al. Contextual structured reporting in radiology: Implementation and long-term evaluation in improving the communication of critical findings. J Med Syst, 2020, 44(9): 148. doi: 10.1007/s10916-020-01609-3.
|
19. |
Pinto Dos Santos D, Kotter E. Structured radiology reporting on an institutional level-benefit or new administrative burden?. Ann N Y Acad Sci, 2018, 1434(1): 274-281.
|
20. |
European Society of Radiology (ESR). ESR paper on structured reporting in radiology-update 2023. Insights Imaging, 2023, 14(1): 199. doi: 10.1186/s13244-023-01560-0.
|
21. |
Chen JY, Sippel Schmidt TM, Carr CD, et al. Enabling the next-generation radiology report: Description of two new system standards. Radiographics, 2017, 37(7): 2106-2112.
|
22. |
Fanni SC, Romei C, Ferrando G, et al. Natural language processing to convert unstructured COVID-19 chest-CT reports into structured reports. Eur J Radiol Open, 2023, 11: 100512. doi: 10.1016/j.ejro.2023.100512.
|
23. |
Adams LC, Truhn D, Busch F, et al. Leveraging GPT-4 for post hoc transformation of free-text radiology reports into structured reporting: A multilingual feasibility study. Radiology, 2023, 307(4): e230725. doi: 10.1148/radiol.230725.
|
24. |
Busch F, Hoffmann L, Dos Santos DP, et al. Large language models for structured reporting in radiology: past, present, and future. Eur Radiol, 2024 Oct 23. doi: 10.1007/s00330-024-11107-6.
|
25. |
Butler JJ, Acosta E, Kuna MC, et al. Decoding radiology reports: Artificial intelligence-large language models can improve the readability of hand and wrist orthopedic radiology reports. Hand (NY), 2024 Aug 13: 15589447241267766. doi: 10.1177/15589447241267766.
|
26. |
Mallio CA, Sertorio AC, Bernetti C, et al. Large language models for structured reporting in radiology: performance of GPT-4, ChatGPT-3. 5, perplexity and bing. Radiol Med, 2023, 128(7): 808-812.
|
27. |
Bhayana R, Nanda B, Dehkharghanian T, et al. Large language models for automated synoptic reports and resectability categorization in pancreatic cancer. Radiology, 2024, 311(3): e233117. doi: 10.1148/radiol.233117.
|
28. |
Rao VM, Hla M, Moor M, et al. Multimodal generative AI for medical image interpretation. Nature, 2025, 639(8056): 888-896.
|
29. |
Tanno R, Barrett DGT, Sellergren A, et al. Collaboration between clinicians and vision-language models in radiology report generation. Nat Med, 2025, 31(2): 599-608.
|
30. |
Amin K, Khosla P, Doshi R, et al. Artificial intelligence to improve patient understanding of radiology reports. Yale J Biol Med, 2023, 96(3): 407-417.
|
31. |
Mityul MI, Gilcrease-Garcia B, Searleman A, et al. Interpretive differences between patients and radiologists regarding the diagnostic confidence associated with commonly used phrases in the radiology report. AJR Am J Roentgenol, 2018, 210(1): 123-126.
|
32. |
Park J, Oh K, Han K, et al. Patient-centered radiology reports with generative artificial intelligence: adding value to radiology reporting. Sci Rep, 2024, 14(1): 13218. doi: 10.1038/s41598-024-63824-z.
|
33. |
Maroncelli R, Rizzo V, Pasculli M, et al. Probing clarity: AI-generated simplified breast imaging reports for enhanced patient comprehension powered by ChatGPT-4o. Eur Radiol Exp, 2024, 8(1): 124. doi: 10.1186/s41747-024-00526-1.
|
34. |
De-Giorgio F, Benedetti B, Mancino M, et al. The need for balancing ‘black box’ systems and explainable artificial intelligence: A necessary implementation in radiology. Eur J Radiol, 2025, 185: 112014. doi: 10.1016/j.ejrad.2025.112014.
|
35. |
Bhadra S, Kelkar VA, Brooks FJ, et al. On hallucinations in tomographic image reconstruction. IEEE Trans Med Imaging, 2021, 40(11): 3249-3260.
|
36. |
Dumit J, Roepstorff A. AI hallucinations are a feature of LLM design, not a bug. Nature, 2025, 639(8053): 38. doi: 10.1038/d41586-025-00662-7.
|
37. |
Jorg T, Halfmann MC, Arnhold G, et al. Implementation of structured reporting in clinical routine: a review of 7 years of institutional experience. Insights Imaging, 2023, 14(1): 61. doi: 10.1186/s13244-023-01408-7.
|
38. |
O’Reilly PA, Lewis S, Reed W. Assessing the implementation of COVID-19 structured reporting templates for chest radiography: a scoping review. BJR Open, 2023, 5(1): 20220058. doi: 10.1259/bjro.20220058.
|