Citation: 何丽秀, 刘春涛. 哮喘患者呼出气一氧化氮和气道高反应性的关系探究. Chinese Journal of Respiratory and Critical Care Medicine, 2016, 15(1): 82-86. doi: 10.7507/1671-6205.2016021 Copy
Copyright © the editorial department of Chinese Journal of Respiratory and Critical Care Medicine of West China Medical Publisher. All rights reserved
1. | Global Initiative for Asthma. Global strategy for asthma management and prevention 2014. |
2. | Zhizhou K, Jarad JW, Shuhong L, et al. Deciphering asthma biomarkers with protein profiling technology. Int J Inflam, 2015, 2015:630-637. |
3. | Häussermann S, Kappeler D, Schmidt A, et al. Fractional exhaled nitric oxide in clinical trials:an overview. Adv Exp Med Biol, 2013, 788:237-245. |
4. | An Official ATS Clinical Practice Guideline:Interpretation of Exhaled Nitric Oxide Levels (FENO) for Clinical Applications. Am J Respir Crit Care Med, 2011, 184:602-615. |
5. | Morris CR. Arginine and asthma. Nestlé Nutr Inst Workshop Ser, 2013, 77:1-15. |
6. | Morris SM Jr. Regulation of enzymes of the urea cycle and arginine metabolism. Annu Rev Nutr, 2002, 22:87-105. |
7. | Puckett JL, George SC. Partitioned exhaled nitric oxide to non-invasively assess asthma. Respir Physiol Neurobiol, 2008, 163:166-177. |
8. | Sandrini A, Taylor DR, Thomas PS, et al. Fractional exhaled nitric oxide in asthma:an update. Respirology, 2010, 15:57-70. |
9. | Ricciardolo FL. Multiple roles of nitric oxide in the airways. Thorax, 2003, 58:175-182. |
10. | Guo FH, Comhair SAA, Zheng S, et al. Molecular mechanisms of increased nitric oxide (NO) in asthma:evidence for transcriptional and post-translational regulation of NO synthesis. J Immunol, 2000, 164:5970-5980. |
11. | 张建勇, 殷少军, 朱惠如.内源性一氧化氮与气道高反应性.国外医学(呼吸系统分册), 1996, 16:13-16. |
12. | 黄铁群, 林耀广.一氧化氮在哮喘发病和治疗中的双重性.国外医学(呼吸系统分册), 1998, 18:51-53. |
13. | Di Maria GU, Spicuzza L, Mistretta A, et al. Role of endogenous nitric oxide in asthma. Allergy, 2000, 55 Suppl 61:31-35. |
14. | Tucker JF, Brave SR, Charalambous L, et al. L-NG-nitro arginine inhibits non-adrenergic, non-cholinergic relaxations of guinea-pig isolated tracheal smooth muscle. Br J Pharmacol, 1990, 100:663-664. |
15. | Belvisi MG, Stretton D, Barnes PJ. Nitric oxide as an endogenous modulator of cholinergic neurotransmission in guinea-pig airways. Eur J Pharmacol, 1991, 198:219-221. |
16. | 黄铁群, 林耀广, 朱元珏, 等.内源性一氧化氮在哮喘大鼠气道高反应性中的作用.中华结核和呼吸杂志, 1999, 12:12-14. |
17. | Maarsingh H, Tio MA, Zaagsma J, et al. Arginase attenuates inhibitory nonadrenergic noncholinergic nerve-induced nitric oxide generation and airway smooth muscle relaxation. Respir Res, 2005, 6:23-29. |
18. | Maarsingh H, Leusink J, Zaagsma J, et al. Role of the L-citrulline/L-arginine cycle in iNANC nerve-mediated nitric oxide production and airway smooth muscle relaxation in allergic asthma. Eur J Pharmacol, 2006, 546:171-176. |
19. | Belvisi MG, Stretton CD, Yacoub M, et al. Nitric oxide is the endogenous neurotransmitter of bronchodilator nerves in humans. Eur J Pharmacol, 1992, 210:221-222. |
20. | Ward JK, Barnes PJ, Tadjkarimi S, et al. Evidence for the involvement of cGMP in neural bronchodilator responses in human trachea. J Physiol, 1995, 483:525-536. |
21. | Beckman JS, Koppenol WH. Nitric oxide, superoxide, and peroxynitrite:the good, the bad, and ugly. Am J Physiol, 1996, 271:C1424-1437. |
22. | Kageyama N, Miura M, Ichinose M, et al. Role of endogenous nitric oxide in airway microvascular leakage induced by inflammatory mediators. Eur Respir J, 1997, 10:13-19. |
23. | Tam A, Wadsworth S, Dorscheid D, et al. The airway epithelium:more than just a structural barrier. Ther Adv Respir Dis, 2011, 5:255-273. |
24. | Laoukili J, Perret E, Willems T, et al. IL-13 alters mucociliary differentiation and ciliary beating of human respiratory epithelial cells. J Clin Invest, 2001, 108:1817-1824. |
25. | Laporte JC, Moore PE, Baraldo S, et al. Direct effects of interleukin-13 on signaling pathways for physiological responses in cultured human airway smooth muscle cells. Am J Respir Crit Care Med, 2001, 164:141-148. |
26. | Scott JA, North ML, Rafii M, et al. Plasma arginine metabolites reflect airway dysfunction in a murine model of allergic airway inflammation. J Appl Physiol, 2015, 118:1229-1233. |
27. | Modolell M, Corraliza IM, Link F, et al. Reciprocal regulation of the nitric oxide synthase/arginase balance in mouse bone marrow-derived macrophages by TH1 and TH2 cytokines. Eur J Immunol, 1995, 25:1101-1104. |
28. | Yang M, Rangasamy D, Matthaei KI, et al. Inhibition of arginase I activity by RNA interference attenuates IL-13-induced airways hyperresponsiveness. J Immunol, 2006, 177:5595-5603. |
29. | Pauwels R, Joos G, Van der Straeten M. Bronchial hyperresponsiveness is not bronchial hyperresponsiveness is not bronchial asthma. Clin Allergy, 1988, 18:317-321. |
30. | Brannan JD, Lougheed MD. Airway hyperresponsiveness in asthma:mechanisms, clinical significance, and treatment. Front Physiol, 2012, 3:460. |
31. | Anderson SD. Indirect challenge tests:Airway hyperresponsiveness in asthma:its measurement and clinical significance. Chest, 2010, 138:25S-30S. |
32. | Jatakanon A, Lim S, Kharitonov SA, et al. Correlation between exhaled nitric oxide, sputum eosinophils, and methacholine responsiveness in patients with mild asthma. Thorax, 1998, 53:91-95. |
33. | Dupont LJ, Rochette F, Demedts MG, et al. Exhaled nitric oxide correlates with airway hyperresponsiveness in steroid-naive patients with mild asthma. Am J Respir Crit Care Med, 1998, 157:894-898. |
34. | Nogami H, Shoji S, Nishima S. Exhaled nitric oxide as a simple assessment of airway hyperresponsiveness in bronchial asthma and chronic cough patients. J Asthma, 2003, 40:653-659. |
35. | Langley SJ, Goldthorpe S, Custovic A, et al. Relationship among pulmonary function, bronchial reactivity, and exhaled nitric oxide in a large group of asthmatic patients. Ann Allergy Asthma Immunol, 2003, 91:398-404. |
36. | Lane C, Knight D, Burgess S, et al. Epithelial inducible nitric oxide synthase activity is the major determinant of nitric oxide concentration in exhaled breath. Thorax, 2004, 59:757-760. |
37. | Huang F, Wachi S, Thai P, et al. Potentiation of IL-19 expression in airway epithelia by IL-17A and IL-4/IL-13:important implications in asthma. J Allergy Clin Immunol, 2008, 121:1415-1421. |
38. | Sverrild A, Porsbjerg C, Thomsen SF, et al. Airway hyperresponsiveness to mannitol and methacholine and exhaled nitric oxide:a random-sample population study. J Allergy Clin Immunol, 2010, 126:952-958. |
39. | Perzanowski MS, Yoo Y. Exhaled Nitric Oxide and Airway Hyperresponsiveness to Adenosine 5'-monophosphate and Methacholine in Children with Asthma. Int Arch Allergy Immunol, 2015, 166:107-113. |
40. | Sverrild A, Malinovschi A, Porsbjerg C, et al. Predicting airway hyperreactivity to mannitol using exhaled nitric oxide in an unselected sample of adolescents and young adults. Respir Med, 2013, 107:150-152. |
41. | Porsbjerg CM, Gibson PG, Pretto JJ, et al. Relationship between airway pathophysiology and airway inflammation in older asthmatics. Respirology, 2013, 18:1128-1134. |
42. | Porsbjerg C, Brannan JD, Anderson SD, et al. Relationship between airway responsiveness to mannitol and to methacholine and markers of airway inflammation, peak flow variability and quality of life in asthma patients. Clin Exp Allergy, 2008, 38:43-50. |
43. | Buchvald F, Hermansen MN, Nielsen KG, et al. Exhaled nitric oxide predicts exercise-induced bronchoconstriction in asthmatic school children. Chest, 2005, 128:1964-1967. |
44. | Shim E, Lee E, Yang SI, et al. The Association of lung function, bronchial hyperresponsiveness, and exhaled nitric oxide differs between atopic and non-atopic asthma in children. Allergy Asthma Immunol Res, 2015, 7:339-345. |
45. | Suh DI, Lee JK, Kim CK, et al. Bronchial hyperresponsiveness to methacholine and adenosine 5'-monophosphate, and the presence and degree of atopy in young children with asthma. Clin Exp Allergy, 2011, 41:338-345. |
46. | Porsbjerg C, Lund TK, Pedersen L, et al. Inflammatory subtypes in asthma are related to airway hyperresponsiveness to mannitol and exhaled NO. J Asthma, 2009, 46:606-612. |
47. | Drews AC, Pizzichini MM, Pizzichini E, et al. Neutrophilic airway inflammation is a main feature of induced sputum in nonatopic asthmatic children. Allergy, 2009, 64:1597-1601. |
48. | Hardaker KM, Downie SR, Kermode JA, et al. Predictors of airway hyperresponsiveness differ between old and young patients with asthma.Chest, 2011, 139:1395-1401. |
49. | Cockcroft DW. Direct challenge tests:airway hyperresponsiveness in asthma:its measurement and clinical significance. Chest, 2010, 138:18S-24S. |
- 1. Global Initiative for Asthma. Global strategy for asthma management and prevention 2014.
- 2. Zhizhou K, Jarad JW, Shuhong L, et al. Deciphering asthma biomarkers with protein profiling technology. Int J Inflam, 2015, 2015:630-637.
- 3. Häussermann S, Kappeler D, Schmidt A, et al. Fractional exhaled nitric oxide in clinical trials:an overview. Adv Exp Med Biol, 2013, 788:237-245.
- 4. An Official ATS Clinical Practice Guideline:Interpretation of Exhaled Nitric Oxide Levels (FENO) for Clinical Applications. Am J Respir Crit Care Med, 2011, 184:602-615.
- 5. Morris CR. Arginine and asthma. Nestlé Nutr Inst Workshop Ser, 2013, 77:1-15.
- 6. Morris SM Jr. Regulation of enzymes of the urea cycle and arginine metabolism. Annu Rev Nutr, 2002, 22:87-105.
- 7. Puckett JL, George SC. Partitioned exhaled nitric oxide to non-invasively assess asthma. Respir Physiol Neurobiol, 2008, 163:166-177.
- 8. Sandrini A, Taylor DR, Thomas PS, et al. Fractional exhaled nitric oxide in asthma:an update. Respirology, 2010, 15:57-70.
- 9. Ricciardolo FL. Multiple roles of nitric oxide in the airways. Thorax, 2003, 58:175-182.
- 10. Guo FH, Comhair SAA, Zheng S, et al. Molecular mechanisms of increased nitric oxide (NO) in asthma:evidence for transcriptional and post-translational regulation of NO synthesis. J Immunol, 2000, 164:5970-5980.
- 11. 张建勇, 殷少军, 朱惠如.内源性一氧化氮与气道高反应性.国外医学(呼吸系统分册), 1996, 16:13-16.
- 12. 黄铁群, 林耀广.一氧化氮在哮喘发病和治疗中的双重性.国外医学(呼吸系统分册), 1998, 18:51-53.
- 13. Di Maria GU, Spicuzza L, Mistretta A, et al. Role of endogenous nitric oxide in asthma. Allergy, 2000, 55 Suppl 61:31-35.
- 14. Tucker JF, Brave SR, Charalambous L, et al. L-NG-nitro arginine inhibits non-adrenergic, non-cholinergic relaxations of guinea-pig isolated tracheal smooth muscle. Br J Pharmacol, 1990, 100:663-664.
- 15. Belvisi MG, Stretton D, Barnes PJ. Nitric oxide as an endogenous modulator of cholinergic neurotransmission in guinea-pig airways. Eur J Pharmacol, 1991, 198:219-221.
- 16. 黄铁群, 林耀广, 朱元珏, 等.内源性一氧化氮在哮喘大鼠气道高反应性中的作用.中华结核和呼吸杂志, 1999, 12:12-14.
- 17. Maarsingh H, Tio MA, Zaagsma J, et al. Arginase attenuates inhibitory nonadrenergic noncholinergic nerve-induced nitric oxide generation and airway smooth muscle relaxation. Respir Res, 2005, 6:23-29.
- 18. Maarsingh H, Leusink J, Zaagsma J, et al. Role of the L-citrulline/L-arginine cycle in iNANC nerve-mediated nitric oxide production and airway smooth muscle relaxation in allergic asthma. Eur J Pharmacol, 2006, 546:171-176.
- 19. Belvisi MG, Stretton CD, Yacoub M, et al. Nitric oxide is the endogenous neurotransmitter of bronchodilator nerves in humans. Eur J Pharmacol, 1992, 210:221-222.
- 20. Ward JK, Barnes PJ, Tadjkarimi S, et al. Evidence for the involvement of cGMP in neural bronchodilator responses in human trachea. J Physiol, 1995, 483:525-536.
- 21. Beckman JS, Koppenol WH. Nitric oxide, superoxide, and peroxynitrite:the good, the bad, and ugly. Am J Physiol, 1996, 271:C1424-1437.
- 22. Kageyama N, Miura M, Ichinose M, et al. Role of endogenous nitric oxide in airway microvascular leakage induced by inflammatory mediators. Eur Respir J, 1997, 10:13-19.
- 23. Tam A, Wadsworth S, Dorscheid D, et al. The airway epithelium:more than just a structural barrier. Ther Adv Respir Dis, 2011, 5:255-273.
- 24. Laoukili J, Perret E, Willems T, et al. IL-13 alters mucociliary differentiation and ciliary beating of human respiratory epithelial cells. J Clin Invest, 2001, 108:1817-1824.
- 25. Laporte JC, Moore PE, Baraldo S, et al. Direct effects of interleukin-13 on signaling pathways for physiological responses in cultured human airway smooth muscle cells. Am J Respir Crit Care Med, 2001, 164:141-148.
- 26. Scott JA, North ML, Rafii M, et al. Plasma arginine metabolites reflect airway dysfunction in a murine model of allergic airway inflammation. J Appl Physiol, 2015, 118:1229-1233.
- 27. Modolell M, Corraliza IM, Link F, et al. Reciprocal regulation of the nitric oxide synthase/arginase balance in mouse bone marrow-derived macrophages by TH1 and TH2 cytokines. Eur J Immunol, 1995, 25:1101-1104.
- 28. Yang M, Rangasamy D, Matthaei KI, et al. Inhibition of arginase I activity by RNA interference attenuates IL-13-induced airways hyperresponsiveness. J Immunol, 2006, 177:5595-5603.
- 29. Pauwels R, Joos G, Van der Straeten M. Bronchial hyperresponsiveness is not bronchial hyperresponsiveness is not bronchial asthma. Clin Allergy, 1988, 18:317-321.
- 30. Brannan JD, Lougheed MD. Airway hyperresponsiveness in asthma:mechanisms, clinical significance, and treatment. Front Physiol, 2012, 3:460.
- 31. Anderson SD. Indirect challenge tests:Airway hyperresponsiveness in asthma:its measurement and clinical significance. Chest, 2010, 138:25S-30S.
- 32. Jatakanon A, Lim S, Kharitonov SA, et al. Correlation between exhaled nitric oxide, sputum eosinophils, and methacholine responsiveness in patients with mild asthma. Thorax, 1998, 53:91-95.
- 33. Dupont LJ, Rochette F, Demedts MG, et al. Exhaled nitric oxide correlates with airway hyperresponsiveness in steroid-naive patients with mild asthma. Am J Respir Crit Care Med, 1998, 157:894-898.
- 34. Nogami H, Shoji S, Nishima S. Exhaled nitric oxide as a simple assessment of airway hyperresponsiveness in bronchial asthma and chronic cough patients. J Asthma, 2003, 40:653-659.
- 35. Langley SJ, Goldthorpe S, Custovic A, et al. Relationship among pulmonary function, bronchial reactivity, and exhaled nitric oxide in a large group of asthmatic patients. Ann Allergy Asthma Immunol, 2003, 91:398-404.
- 36. Lane C, Knight D, Burgess S, et al. Epithelial inducible nitric oxide synthase activity is the major determinant of nitric oxide concentration in exhaled breath. Thorax, 2004, 59:757-760.
- 37. Huang F, Wachi S, Thai P, et al. Potentiation of IL-19 expression in airway epithelia by IL-17A and IL-4/IL-13:important implications in asthma. J Allergy Clin Immunol, 2008, 121:1415-1421.
- 38. Sverrild A, Porsbjerg C, Thomsen SF, et al. Airway hyperresponsiveness to mannitol and methacholine and exhaled nitric oxide:a random-sample population study. J Allergy Clin Immunol, 2010, 126:952-958.
- 39. Perzanowski MS, Yoo Y. Exhaled Nitric Oxide and Airway Hyperresponsiveness to Adenosine 5'-monophosphate and Methacholine in Children with Asthma. Int Arch Allergy Immunol, 2015, 166:107-113.
- 40. Sverrild A, Malinovschi A, Porsbjerg C, et al. Predicting airway hyperreactivity to mannitol using exhaled nitric oxide in an unselected sample of adolescents and young adults. Respir Med, 2013, 107:150-152.
- 41. Porsbjerg CM, Gibson PG, Pretto JJ, et al. Relationship between airway pathophysiology and airway inflammation in older asthmatics. Respirology, 2013, 18:1128-1134.
- 42. Porsbjerg C, Brannan JD, Anderson SD, et al. Relationship between airway responsiveness to mannitol and to methacholine and markers of airway inflammation, peak flow variability and quality of life in asthma patients. Clin Exp Allergy, 2008, 38:43-50.
- 43. Buchvald F, Hermansen MN, Nielsen KG, et al. Exhaled nitric oxide predicts exercise-induced bronchoconstriction in asthmatic school children. Chest, 2005, 128:1964-1967.
- 44. Shim E, Lee E, Yang SI, et al. The Association of lung function, bronchial hyperresponsiveness, and exhaled nitric oxide differs between atopic and non-atopic asthma in children. Allergy Asthma Immunol Res, 2015, 7:339-345.
- 45. Suh DI, Lee JK, Kim CK, et al. Bronchial hyperresponsiveness to methacholine and adenosine 5'-monophosphate, and the presence and degree of atopy in young children with asthma. Clin Exp Allergy, 2011, 41:338-345.
- 46. Porsbjerg C, Lund TK, Pedersen L, et al. Inflammatory subtypes in asthma are related to airway hyperresponsiveness to mannitol and exhaled NO. J Asthma, 2009, 46:606-612.
- 47. Drews AC, Pizzichini MM, Pizzichini E, et al. Neutrophilic airway inflammation is a main feature of induced sputum in nonatopic asthmatic children. Allergy, 2009, 64:1597-1601.
- 48. Hardaker KM, Downie SR, Kermode JA, et al. Predictors of airway hyperresponsiveness differ between old and young patients with asthma.Chest, 2011, 139:1395-1401.
- 49. Cockcroft DW. Direct challenge tests:airway hyperresponsiveness in asthma:its measurement and clinical significance. Chest, 2010, 138:18S-24S.
-
Previous Article
PiCCO联合腹内压实时监测在危重患者中的应用及相关性分析 -
Next Article
循环肿瘤细胞在非小细胞肺癌中的研究进展