Citation: 邓玉英, 唐华平, 毛琦善, 邹慎春. 半胱氨酰白三烯与呼吸系统疾病的研究进展. Chinese Journal of Respiratory and Critical Care Medicine, 2020, 19(3): 291-298. doi: 10.7507/1671-6205.201803033 Copy
Copyright © the editorial department of Chinese Journal of Respiratory and Critical Care Medicine of West China Medical Publisher. All rights reserved
1. | Heidenreich KA, Corser-Jensen CE. 5-Lipoxygenase-activating protein inhibitors: promising drugs for treating acute and chronic neuroinflammation following brain injury[M]//New therapeutics for traumatic brain injury. 2017: 199-210.3444555. |
2. | Kanaoka Y, Boyce JA. Cysteinyl leukotrienes and their receptors; emerging concepts. Allergy Asthma Immunol Res, 2014, 6(4): 288-295. |
3. | Salimi M, Stöger L, Liu W, et al. Cysteinyl leukotriene E4 activates human group 2 innate lymphoid cells and enhances the effect of prostaglandin D2 and epithelial cytokines. J Allergy Clin Immunol, 2017, 140(4): 1090-1100. |
4. | Peters-Golden M, Sampson AP. Cysteinyl leukotriene interactions with other mediators and with glucocorticosteroids during airway inflammation. J Allergy Clin Immunol, 2003, 111(1): S37-S48. |
5. | Vannella KM, McMillan TR, Charbeneau RP, et al. Cysteinyl leukotrienes are autocrine and paracrine regulators of fibrocyte function. J Immunol, 2007, 179(11): 7883-7890. |
6. | Lee E, Robertson T, Smith J, et al. Leukotriene receptor antagonists and synthesis inhibitors reverse survival in eosinophils of asthmatic individuals. Am J Respir Crit Care Med, 2000, 161(6): 1881-1886. |
7. | Bandeira-Melo C, Woods LJ, Phoofolo M, et al. Intracrine cysteinyl leukotriene receptor–mediated signaling of eosinophil vesicular transport–mediated interleukin-4 secretion. J Exp Med, 2002, 196(6): 841-850. |
8. | Lin DA, Boyce JA. IL-4 regulates MEK expression required for lysophosphatidic acid-mediated chemokine generation by human mast cells. J Immunol, 2005, 175(8): 5430-5438. |
9. | Jiang Y, Kanaoka Y, Feng C, et al. Cutting edge: Interleukin 4-dependent mast cell proliferation requires autocrine/intracrine cysteinyl leukotriene-induced signaling. J Immunol, 2006, 177(5): 2755-2759. |
10. | Doherty TA, Khorram N, Lund S, et al. Lung type 2 innate lymphoid cells express cysteinyl leukotriene receptor 1, which regulates TH2 cytokine production. J Allergy Clin Immunol, 2013, 132(1): 205-213. |
11. | Singh RK, Gupta S, Dastidar S, et al. Cysteinyl leukotrienes and their receptors: molecular and functional characteristics. Pharmacology, 2010, 85(6): 336-349. |
12. | Liu M, Yokomizo T. The role of leukotrienes in allergic diseases. Allergol Int, 2015, 64(1): 17-26. |
13. | Espinosa K, Bossé Y, Stankova J, et al. CysLT1 receptor upregulation by TGF-β and IL-13 is associated with bronchial smooth muscle cell proliferation in response to LTD4. J Allergy Clin Immunol, 2003, 111(5): 1032-1040. |
14. | Shirasaki H, Kanaizumi E, Himi T. Leukotriene D4 induces chemotaxis in human eosinophilc cell line, EoL-1 cells via CysLT1 receptor activation. Heliyon, 2017, 3(11): e00464. |
15. | Lazarinis N, Bood J, Gomez C, et al. Leukotriene E4 induces airflow obstruction and mast cell activation via the CysLT1 receptor. J Allergy Clin Immunol, 2018, 2018: S0091-6749. |
16. | Lazarinis N, Bood J, Gomez C, et al. The CysLT 1 receptor antagonist montelukast inhibits mast cell activation induced by inhaled leukotriene E 4 in subjects with asthma. Eur Respir J, 2016, 48(60): OA1983. |
17. | Osman J, Savari S, Chandrashekar N K, et al. Cysteinyl leukotriene receptor 1 facilitates tumorigenesis in a mouse model of colitis-associated colon cancer. Oncotarget, 2017, 8(21): 34773. |
18. | Bellamkonda K, Chandrashekar NK, Osman J, et al. The eicosanoids leukotriene D 4 and prostaglandin E 2 promote the tumorigenicity of colon cancer-initiating cells in a xenograft mouse model. BMC Cancer, 2016, 16(1): 425. |
19. | Salim T, Sand-Dejmek J, Sjölander A. The inflammatory mediator leukotriene D4 induces subcellular β-catenin translocation and migration of colon cancer cells. Exp Cell Res, 2014, 321(2): 255-266. |
20. | Savari S, Vinnakota K, Zhang Y, et al. Cysteinyl leukotrienes and their receptors: bridging inflammation and colorectal cancer. World J Gastroenterol, 2014, 20(4): 968. |
21. | Heise CE, O'Dowd BF, Figueroa DJ, et al. Characterization of the human cysteinyl leukotriene 2 receptor. J Biol Chem, 2000, 275(39): 30531-30536. |
22. | Hu H, Chen G, Zhang J, et al. Distribution of cysteinyl leukotriene receptor 2 in human traumatic brain injury and brain tumors. Acta Pharmacol Sin, 2005, 26(6): 685-690. |
23. | Lynch KR, O'neill GP, Liu Q, et al. Characterization of the human cysteinyl leukotriene CysLT1 receptor. Nature, 1999, 399(6738): 789-793. |
24. | Mita H, Hasegawa M, Saito H, et al. Levels of cysteinyl leukotriene receptor mRNA in human peripheral leucocytes: significantly higher expression of cysteinyl leukotriene receptor 2 mRNA in eosinophils. Clin Exp Allergy, 2001, 31(11): 1714-1723. |
25. | Jiang W, Hall SR, Moos MPW, et al. Endothelial cysteinyl leukotriene 2 receptor expression mediates myocardial ischemia-reperfusion injury. Am J Pathol, 2008, 172(3): 592-602. |
26. | Chen L, Yang Y, Li CT, et al. CysLT2 receptor mediates lipopolysaccharide-induced microglial inflammation and consequent neurotoxicity in vitro. Brain Res, 2015, 1624: 433-445. |
27. | Bankova LG, Lai J, Yoshimoto E, et al. Leukotriene E4 elicits respiratory epithelial cell mucin release through the G-protein–coupled receptor, GPR99. Proc Natl Acad Sci U S A, 2016, 113(22): 6242-6247. |
28. | Bankova LG, Dwyer DF, Yoshimoto E, et al. The cysteinyl leukotriene 3 receptor regulates expansion of IL-25–producing airway brush cells leading to type 2 inflammation. Sci Immunol, 2018, 3(28): eaat9453. |
29. | Wunder F, Tinel H, Kast R, et al. Pharmacological characterization of the first potent and selective antagonist at the cysteinyl leukotriene 2 (CysLT2) receptor. Br J Pharmacol, 2010, 160(2): 399-409. |
30. | Yan D, Stocco R, Sawyer N, et al. Differential signaling of cysteinyl leukotrienes and a novel cysteinyl leukotriene receptor 2 (CysLT2) agonist, N-methyl-leukotriene C4, in calcium reporter and barrestin assays. Mol Pharmacol, 2011, 79: 270-278. |
31. | Huang XJ, Zhang WP, Li CT, et al. Activation of CysLT receptors induces astrocyte proliferation and death after oxygen-glucose deprivation. Glia, 2008, 56(1): 27-37. |
32. | Schaal SM, Garg MS, Ghosh M, et al. The therapeutic profile of rolipram, PDE target and mechanism of action as a neuroprotectant following spinal cord injury. PLoS One, 2012, 7: e43634. |
33. | Zhang XY, Wang XR, Xu DM, et al. HAMI 3379, a CysLT2 receptor antagonist, attenuates ischemia-like neuronal injury by inhibiting microglial activation. J Pharmacol Exp Ther, 2013, 346(2): 328-341. |
34. | Akai Y, Tabuchi Y, Ando K, et al. Preparation of benzo[b]furans having five-membered heterocycles at the 2-position and 2-(4-Alkylcarbamoylbuta-1,3-dienyl)benzo[b]furans, and their cysteinyl leukotriene receptor (cysLT1, cysLT2) inhibitory activity. Chem Pharm Bull (Tokyo), 2012, 60(11): 1461-1467. |
35. | Itadani S, Takahashi S, Ima M, et al. Discovery of highly potent dual CysLT1 and CysLT2 antagonist. ACS Med Chem Lett, 2014, 5(11): 1230-1234. |
36. | Itadani S, Yashiro K, Aratani Y, et al. Discovery of Gemilukast (ONO-6950), a dual CysLT1 and CysLT2 antagonist as a therapeutic agent for asthma. J Med Chem, 2015, 58(15): 6093-6113. |
37. | Boyce JA. Mast cells and eicosanoid mediators: a system of reciprocal paracrine and autocrine regulation. Immunol Rev, 2007, 217(1): 168-185. |
38. | Uchida Y, Soma T, Kobayashi T, et al. Differential features of pro-inflammatory eicosanoids in exhaled breath condensate and sputum from asthmatics. J Allergy Clin Immunol, 2018, 141(2): AB110. |
39. | Hoffman BC, Rabinovitch N. Urinary leukotriene E4 as a biomarker of exposure, susceptibility, and risk in asthma: an update. Immunol Allergy Clin, 2018, 38(4): 599-610. |
40. | Rabinovitch N. Urinary leukotriene E4 as a biomarker of exposure, susceptibility and risk in asthma. Immunol Allergy Clin, 2012, 32(3): 433-445. |
41. | Hallstrand TS, Henderson Jr WR. The evolving role of intravenous leukotriene modifiers in acute asthma. J Allergy Clin Immunol, 2010, 125: 381-382. |
42. | Lam S, Chan H, LeRiche J, et al. Release of leukotrienes in patients with bronchial asthma. J Allergy Clin Immunol, 1988, 81(4): 711-717. |
43. | Zhu J, Qiu YS, Figueroa DJ, et al. Localization and upregulation of cysteinyl leukotriene-1 receptor in asthmatic bronchial mucosa. Am J Respir Cell Mol Biol, 2005, 33(6): 531-540. |
44. | Diamant Z, Mantzouranis E, Bjermer L. Montelukast in the treatment of asthma and beyond. Expert Rev Clin Immunol, 2009, 5(6): 639-658. |
45. | Al-Nemer OA, Alshareef HJ, Aljehani AA, et al. A review of the pathogenesis of pediatric asthma and the effect of leukotriene modifiers in pediatric asthma management. Egypt J Hosp Med, 2017, 69(5): 2378-2383. |
46. | Tenero L, Piazza M, Sandri M, et al. Effect of montelukast on markers of airway remodeling in children with asthma. Allergy Asthma Proc, 2016, 37(5): 77-83. |
47. | Kuo CH, Yang SN, Kuo HF, et al. Cysteinyl leukotriene receptor antagonist epigenetically modulates cytokine expression and maturation of human myeloid dendritic cells. Pulm Pharmacol Ther, 2016, 39: 28-37. |
48. | Tsai MJ, Wu PH, Sheu CC, et al. Cysteinyl leukotriene receptor antagonists decrease cancer risk in asthma patients. Sci Rep, 2016, 6: 23979. |
49. | 中华医学会儿科学分会呼吸学组. 白三烯受体拮抗剂在儿童常见呼吸系统疾病中的临床应用专家共识. 中华实用儿科临床杂志, 2016, 31(13): 973-977. |
50. | Matsuda M, Tabuchi Y, Nishimura K, et al. Increased expression of CysLT2 receptors in the lung of asthmatic mice and role in allergic responses. Prostaglandins Leukot Essent Fatty Acids, 2018, 131: 24-31. |
51. | Sekioka T, Kadode M, Fujii M, et al. Expression of CysLT2 receptors in asthma lung, and their possible role in bronchoconstriction. Allergol Int, 2015, 64(4): 351-358. |
52. | Gauvreau GM, Boulet LP, FitzGerald JM, et al. A dual Cys LT 1/2 antagonist attenuates allergen‐induced airway responses in subjects with mild allergic asthma. Allergy, 2016, 71(12): 1721-1727. |
53. | Hervás D, Reina J, Yañez A, et al. Epidemiology of hospitalization for acute bronchiolitis in children: differences between RSV and non-RSV bronchiolitis. Eur J Clin Microbiol Infect Dis, 2012, 31(8): 1975-1981. |
54. | Behera AK, Kumar M, Matsuse H, et al. Respiratory syncytial virus induces the expression of 5-lipoxygenase and endothelin-1 in bronchial epithelial cells. Biochem Biophys Res Commun, 1998, 251(3): 704-709. |
55. | Wedde-Beer K, Hu C, Rodriguez MM, et al. Leukotrienes mediate neurogenic inflammation in lungs of young rats infected with respiratory syncytial virus. Am J Physiol Lung Cell Mol Physiol, 2002, 282(5): L1143-L1150. |
56. | Oh JW, Shin SA, Lee HB. Urine leukotriene E4 and eosinophil cationic protein in nasopharyngeal aspiration from young wheezy children. Pediatr Allergy Immunol, 2005, 16(5): 416-421. |
57. | Dalt LD, Callegaro S, Carraro S, et al. Nasal lavage leukotrienes in infants with RSV bronchiolitis. Pediatr Allergy Immunol, 2007, 18(2): 100-104. |
58. | 刘雪茹, 胡艳, 陈和斌, 等. 孟鲁司特钠治疗儿童呼吸道合胞病毒感染毛细支气管炎的疗效及对炎症标志物的影响. 中华医院感染学杂志, 2018, 28(2): 276-279. |
59. | Kearns GL, Lu S, Maganti L, et al. Pharmacokinetics and safety of montelukast oral granules in children 1 to 3 months of age with bronchiolitis. J Clin Pharmacol, 2008, 48(4): 502-511. |
60. | 蔡昀庭, 鲍一笑, 范飞, 等. 婴幼儿喘息急性期联合降阶梯治疗方案中孟鲁司特钠的作用研究. 儿科药学杂志, 2013, 19(7): 6-10. |
61. | Zedan M, Gamil N, El-Assmy M, et al. Montelukast as an episodic modifier for acute viral bronchiolitis: a randomized trial. Allergy Asthma Proc, 2010, 31(2): 147-153. |
62. | Peng WS, Chen X, Yang XY, et al. Systematic review of montelukast's efficacy for preventing post‐bronchiolitis wheezing. Pediatr Allergy Immunol, 2014, 25(2): 143-150. |
63. | Tsubomatsu C, Shintani T, Abe A, et al. Diagnosis and treatment of obstructive sleep apnea syndrome in children. Adv Otolaryngol, 2016, 77: 105-111. |
64. | Tsaoussoglou M, Lianou L, Maragozidis P, et al. Cysteinyl leukotriene receptors in tonsillar B-and T-lymphocytes from children with obstructive sleep apnea. Sleep Med, 2012, 13(7): 879-885. |
65. | Shu Y, Yang D Z, Liang J, et al. Effects of leukotriene D4 on adenoidal T cells in children with obstructive sleep apnea syndrome. Am J Transl Res, 2016, 8(10): 4329. |
66. | Kaditis AG, Alexopoulos E, Chaidas K, et al. Urine concentrations of cysteinyl leukotrienes in children with obstructive sleep-disordered breathing. Chest, 2009, 135(6): 1496-1501. |
67. | 郑国君, 巫小燕, 李悦, 等. 半胱氨酸白三烯表达在阻塞性睡眠呼吸暂停低通气综合征中的临床研究. 中国临床药理学杂志, 2015, 31(21): 2093-2095. |
68. | Sunkonkit K, Sritippayawan S, Veeravikrom M, et al. Urinary cysteinyl leukotriene E4 level and therapeutic response to montelukast in children with mild obstructive sleep apnea. Asian Pac J Allergy Immunol, 2017, 35: 233-238. |
69. | 舒艳. 半胱氨酸白三烯影响 OSAHS 患儿腺样体 T 细胞增殖及凋亡的作用与机制[D]. 重庆医科大学, 2014: 1-92. |
70. | Goldbart AD, Greenberg-Dotan S, Tal A. Montelukast for children with obstructive sleep apnea: a double-blind, placebo-controlled study. Pediatrics, 2012, 130(3): e575-e580. |
71. | Gautier-Veyret E, Bäck M, Arnaud C, et al. Cysteinyl-leukotriene pathway as a new therapeutic target for the treatment of atherosclerosis related to obstructive sleep apnea syndrome. Pharmacol Res, 2018, 134: 311-319. |
72. | Gowda G, Lakshmi S, Parasuramalu BG, et al. A study on allergen sensitivity in patients with allergic rhinitis in Bangalore, India. J Laryngol Otol, 2014, 128(10): 892-896. |
73. | Haberal I, Corey JP. The role of leukotrienes in nasal allergy. Otolaryngol Head Neck Surg, 2003, 129(3): 274-279. |
74. | Hara H, Sugahara K, Hashimoto M, et al. Effectiveness of the leukotriene receptor antagonist pranlukast hydrate for the treatment of sleep disorder in patients with perennial allergic rhinitis. Acta Otolaryngol, 2014, 134(3): 307-313. |
75. | Figueroa DJ, Borish L, Baramki D, et al. Expression of cysteinyl leukotriene synthetic and signaling proteins in inflammatory cells in active seasonal allergic rhinitis. Clin Exp Allergy, 2003, 33(10): 1380-1388. |
76. | Shirasaki H, Kanaizumi E, Watanabe K, et al. Expression and localization of the cysteinyl leukotriene 1 receptor in human nasal mucosa. Clin Exp Allergy, 2002, 32(7): 1007-1012. |
77. | Knapp HR. Reduced allergen-induced nasal congestion and leukotriene synthesis with an orally active 5-lipoxygenase inhibitor. N Engl J Med, 1990, 323(25): 1745-1748. |
78. | 陆忆, 殷敏, 程雷. 白三烯受体拮抗剂孟鲁司特治疗变应性鼻炎的荟萃分析. 中华耳鼻咽喉头颈外科杂志, 2014, 49(9): 659-667. |
79. | Wilson AM, O’Byrne PM. Parameswaran K: Leukotriene receptor antagonists for allergic rhinitis: a systematic review and meta-analysis. Am J Med, 2004, 116: 338-344. |
80. | Chen H, Lou H, Wang Y, et al. Comparison of the efficacy and mechanisms of intranasal budesonide, montelukast, and their combination in treatment of patients with seasonal allergic rhinitis. Int Forum Allergy Rhinol, 2018, 8(11): 1242-1252. |
81. | Xu Y, Zhang J, Wang J. The efficacy and safety of selective H1-antihistamine versus leukotriene receptor antagonist for seasonal allergic rhinitis: a meta-analysis. PloS One, 2014, 9(11): e112815. |
82. | Stevens WW, Peters AT, Hirsch AG, et al. Clinical characteristics of patients with chronic rhinosinusitis with nasal polyps, asthma, and aspirin-exacerbated respiratory disease. J Allergy Clin Immunol Pract, 2017, 5(4): 1061-1070. |
83. | Morales DR, Guthrie B, Lipworth BJ, et al. NSAID-exacerbated respiratory disease: a meta-analysis evaluating prevalence, mean provocative dose of aspirin and increased asthma morbidity. Allergy, 2015, 70(7): 828. |
84. | Laidlaw TM, Boyce JA. Platelets in patients with aspirin-exacerbated respiratory disease. J Allergy Clin Immunol, 2015, 135(6): 1407-1414. |
85. | Baker MG, Negri J, Steinke JW, et al. Increased expression of leukotriene C4 synthase is a feature of circulating CD34+ hematopoietic stem cells but not circulating eosinophils in aspirin-exacerbated respiratory disease (AERD). J Allergy Clin Immunol, 2015, 135(2): AB222. |
86. | Liu T, Kanaoka Y, Barrett NA, et al. Aspirin exacerbated respiratory disease involves a cysteinyl leukotriene-driven IL-33-mediated mast cell activation pathway. J Allergy Clin Immunol, 2016, 137(2): AB200. |
87. | White A, Ludington E, Mehra P, et al. Effect of leukotriene modifier drugs on the safety of oral aspirin challenges. Ann Allergy Asthma Immunol, 2006, 97(5): 688-693. |
88. | Dahlén SE, Malmström K, Nizankowska E, et al. Improvement of aspirin-intolerant asthma by montelukast, a leukotriene antagonist: a randomized, double-blind, placebo-controlled trial. Am J Respir Crit Care Med, 2002, 165: 9-14. |
89. | Schäper C, Noga O, Koch B, et al. Anti-inflammatory properties of montelukast, a leukotriene receptor antagonist in patients with asthma and nasal polyposis. J Investig Allergol Clin Immunol, 2011, 21(1): 51-58. |
90. | Ta V, White AA. Survey-defined patient experiences with aspirin-exacerbated respiratory disease. J Allergy Clin Immunol Pract, 2015, 3(5): 711-718. |
91. | Vogelmeier CF, Criner GJ, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease, 2017 report. GOLD executive summary. Am J Respir Crit Care Med, 2017, 195: 557-582. |
92. | Zanini A, Cherubino F, Zampogna E, et al. Bronchial hyperresponsiveness, airway inflammation, and reversibility in patients with chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis, 2015, 10: 1155-1161. |
93. | Van den Berge M, Vonk JM, Gosman M, et al. Clinical and inflammatory determinants of bronchial hyperresponsiveness in COPD. Eur Respir J, 2012, 40(5): 1098-1105. |
94. | Sethi S, Mahler DA, Marcus P, et al. Inflammation in COPD: implications for management. Am J Med, 2012, 125(12): 1162-1170. |
95. | Andersson CK, Mori M, Bjermer L, et al. Alterations in lung mast cell populations in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 2010, 181(3): 206-217. |
96. | 刘海玲, 胡苏萍, 聂汉祥, 等. 中重度稳定期慢性阻塞性肺疾病患者尿白三烯 E4 测定及临床意义. 医学研究杂志, 2017, 46(2): 119-122,36. |
97. | 曲桂红, 孙志芬, 张媚霞. 孟鲁司特钠治疗中重度稳定期 COPD 的疗效及其对患者白三烯 E4 水平的影响. 中国老年学杂志, 2015, 35(7): 1747-1749. |
98. | Abdel Kawy HS. Montelukast versus dexamethasone treatment in a guinea pig model of chronic pulmonary neutrophilic inflammation. COPD, 2016, 13(4): 455-463. |
- 1. Heidenreich KA, Corser-Jensen CE. 5-Lipoxygenase-activating protein inhibitors: promising drugs for treating acute and chronic neuroinflammation following brain injury[M]//New therapeutics for traumatic brain injury. 2017: 199-210.3444555.
- 2. Kanaoka Y, Boyce JA. Cysteinyl leukotrienes and their receptors; emerging concepts. Allergy Asthma Immunol Res, 2014, 6(4): 288-295.
- 3. Salimi M, Stöger L, Liu W, et al. Cysteinyl leukotriene E4 activates human group 2 innate lymphoid cells and enhances the effect of prostaglandin D2 and epithelial cytokines. J Allergy Clin Immunol, 2017, 140(4): 1090-1100.
- 4. Peters-Golden M, Sampson AP. Cysteinyl leukotriene interactions with other mediators and with glucocorticosteroids during airway inflammation. J Allergy Clin Immunol, 2003, 111(1): S37-S48.
- 5. Vannella KM, McMillan TR, Charbeneau RP, et al. Cysteinyl leukotrienes are autocrine and paracrine regulators of fibrocyte function. J Immunol, 2007, 179(11): 7883-7890.
- 6. Lee E, Robertson T, Smith J, et al. Leukotriene receptor antagonists and synthesis inhibitors reverse survival in eosinophils of asthmatic individuals. Am J Respir Crit Care Med, 2000, 161(6): 1881-1886.
- 7. Bandeira-Melo C, Woods LJ, Phoofolo M, et al. Intracrine cysteinyl leukotriene receptor–mediated signaling of eosinophil vesicular transport–mediated interleukin-4 secretion. J Exp Med, 2002, 196(6): 841-850.
- 8. Lin DA, Boyce JA. IL-4 regulates MEK expression required for lysophosphatidic acid-mediated chemokine generation by human mast cells. J Immunol, 2005, 175(8): 5430-5438.
- 9. Jiang Y, Kanaoka Y, Feng C, et al. Cutting edge: Interleukin 4-dependent mast cell proliferation requires autocrine/intracrine cysteinyl leukotriene-induced signaling. J Immunol, 2006, 177(5): 2755-2759.
- 10. Doherty TA, Khorram N, Lund S, et al. Lung type 2 innate lymphoid cells express cysteinyl leukotriene receptor 1, which regulates TH2 cytokine production. J Allergy Clin Immunol, 2013, 132(1): 205-213.
- 11. Singh RK, Gupta S, Dastidar S, et al. Cysteinyl leukotrienes and their receptors: molecular and functional characteristics. Pharmacology, 2010, 85(6): 336-349.
- 12. Liu M, Yokomizo T. The role of leukotrienes in allergic diseases. Allergol Int, 2015, 64(1): 17-26.
- 13. Espinosa K, Bossé Y, Stankova J, et al. CysLT1 receptor upregulation by TGF-β and IL-13 is associated with bronchial smooth muscle cell proliferation in response to LTD4. J Allergy Clin Immunol, 2003, 111(5): 1032-1040.
- 14. Shirasaki H, Kanaizumi E, Himi T. Leukotriene D4 induces chemotaxis in human eosinophilc cell line, EoL-1 cells via CysLT1 receptor activation. Heliyon, 2017, 3(11): e00464.
- 15. Lazarinis N, Bood J, Gomez C, et al. Leukotriene E4 induces airflow obstruction and mast cell activation via the CysLT1 receptor. J Allergy Clin Immunol, 2018, 2018: S0091-6749.
- 16. Lazarinis N, Bood J, Gomez C, et al. The CysLT 1 receptor antagonist montelukast inhibits mast cell activation induced by inhaled leukotriene E 4 in subjects with asthma. Eur Respir J, 2016, 48(60): OA1983.
- 17. Osman J, Savari S, Chandrashekar N K, et al. Cysteinyl leukotriene receptor 1 facilitates tumorigenesis in a mouse model of colitis-associated colon cancer. Oncotarget, 2017, 8(21): 34773.
- 18. Bellamkonda K, Chandrashekar NK, Osman J, et al. The eicosanoids leukotriene D 4 and prostaglandin E 2 promote the tumorigenicity of colon cancer-initiating cells in a xenograft mouse model. BMC Cancer, 2016, 16(1): 425.
- 19. Salim T, Sand-Dejmek J, Sjölander A. The inflammatory mediator leukotriene D4 induces subcellular β-catenin translocation and migration of colon cancer cells. Exp Cell Res, 2014, 321(2): 255-266.
- 20. Savari S, Vinnakota K, Zhang Y, et al. Cysteinyl leukotrienes and their receptors: bridging inflammation and colorectal cancer. World J Gastroenterol, 2014, 20(4): 968.
- 21. Heise CE, O'Dowd BF, Figueroa DJ, et al. Characterization of the human cysteinyl leukotriene 2 receptor. J Biol Chem, 2000, 275(39): 30531-30536.
- 22. Hu H, Chen G, Zhang J, et al. Distribution of cysteinyl leukotriene receptor 2 in human traumatic brain injury and brain tumors. Acta Pharmacol Sin, 2005, 26(6): 685-690.
- 23. Lynch KR, O'neill GP, Liu Q, et al. Characterization of the human cysteinyl leukotriene CysLT1 receptor. Nature, 1999, 399(6738): 789-793.
- 24. Mita H, Hasegawa M, Saito H, et al. Levels of cysteinyl leukotriene receptor mRNA in human peripheral leucocytes: significantly higher expression of cysteinyl leukotriene receptor 2 mRNA in eosinophils. Clin Exp Allergy, 2001, 31(11): 1714-1723.
- 25. Jiang W, Hall SR, Moos MPW, et al. Endothelial cysteinyl leukotriene 2 receptor expression mediates myocardial ischemia-reperfusion injury. Am J Pathol, 2008, 172(3): 592-602.
- 26. Chen L, Yang Y, Li CT, et al. CysLT2 receptor mediates lipopolysaccharide-induced microglial inflammation and consequent neurotoxicity in vitro. Brain Res, 2015, 1624: 433-445.
- 27. Bankova LG, Lai J, Yoshimoto E, et al. Leukotriene E4 elicits respiratory epithelial cell mucin release through the G-protein–coupled receptor, GPR99. Proc Natl Acad Sci U S A, 2016, 113(22): 6242-6247.
- 28. Bankova LG, Dwyer DF, Yoshimoto E, et al. The cysteinyl leukotriene 3 receptor regulates expansion of IL-25–producing airway brush cells leading to type 2 inflammation. Sci Immunol, 2018, 3(28): eaat9453.
- 29. Wunder F, Tinel H, Kast R, et al. Pharmacological characterization of the first potent and selective antagonist at the cysteinyl leukotriene 2 (CysLT2) receptor. Br J Pharmacol, 2010, 160(2): 399-409.
- 30. Yan D, Stocco R, Sawyer N, et al. Differential signaling of cysteinyl leukotrienes and a novel cysteinyl leukotriene receptor 2 (CysLT2) agonist, N-methyl-leukotriene C4, in calcium reporter and barrestin assays. Mol Pharmacol, 2011, 79: 270-278.
- 31. Huang XJ, Zhang WP, Li CT, et al. Activation of CysLT receptors induces astrocyte proliferation and death after oxygen-glucose deprivation. Glia, 2008, 56(1): 27-37.
- 32. Schaal SM, Garg MS, Ghosh M, et al. The therapeutic profile of rolipram, PDE target and mechanism of action as a neuroprotectant following spinal cord injury. PLoS One, 2012, 7: e43634.
- 33. Zhang XY, Wang XR, Xu DM, et al. HAMI 3379, a CysLT2 receptor antagonist, attenuates ischemia-like neuronal injury by inhibiting microglial activation. J Pharmacol Exp Ther, 2013, 346(2): 328-341.
- 34. Akai Y, Tabuchi Y, Ando K, et al. Preparation of benzo[b]furans having five-membered heterocycles at the 2-position and 2-(4-Alkylcarbamoylbuta-1,3-dienyl)benzo[b]furans, and their cysteinyl leukotriene receptor (cysLT1, cysLT2) inhibitory activity. Chem Pharm Bull (Tokyo), 2012, 60(11): 1461-1467.
- 35. Itadani S, Takahashi S, Ima M, et al. Discovery of highly potent dual CysLT1 and CysLT2 antagonist. ACS Med Chem Lett, 2014, 5(11): 1230-1234.
- 36. Itadani S, Yashiro K, Aratani Y, et al. Discovery of Gemilukast (ONO-6950), a dual CysLT1 and CysLT2 antagonist as a therapeutic agent for asthma. J Med Chem, 2015, 58(15): 6093-6113.
- 37. Boyce JA. Mast cells and eicosanoid mediators: a system of reciprocal paracrine and autocrine regulation. Immunol Rev, 2007, 217(1): 168-185.
- 38. Uchida Y, Soma T, Kobayashi T, et al. Differential features of pro-inflammatory eicosanoids in exhaled breath condensate and sputum from asthmatics. J Allergy Clin Immunol, 2018, 141(2): AB110.
- 39. Hoffman BC, Rabinovitch N. Urinary leukotriene E4 as a biomarker of exposure, susceptibility, and risk in asthma: an update. Immunol Allergy Clin, 2018, 38(4): 599-610.
- 40. Rabinovitch N. Urinary leukotriene E4 as a biomarker of exposure, susceptibility and risk in asthma. Immunol Allergy Clin, 2012, 32(3): 433-445.
- 41. Hallstrand TS, Henderson Jr WR. The evolving role of intravenous leukotriene modifiers in acute asthma. J Allergy Clin Immunol, 2010, 125: 381-382.
- 42. Lam S, Chan H, LeRiche J, et al. Release of leukotrienes in patients with bronchial asthma. J Allergy Clin Immunol, 1988, 81(4): 711-717.
- 43. Zhu J, Qiu YS, Figueroa DJ, et al. Localization and upregulation of cysteinyl leukotriene-1 receptor in asthmatic bronchial mucosa. Am J Respir Cell Mol Biol, 2005, 33(6): 531-540.
- 44. Diamant Z, Mantzouranis E, Bjermer L. Montelukast in the treatment of asthma and beyond. Expert Rev Clin Immunol, 2009, 5(6): 639-658.
- 45. Al-Nemer OA, Alshareef HJ, Aljehani AA, et al. A review of the pathogenesis of pediatric asthma and the effect of leukotriene modifiers in pediatric asthma management. Egypt J Hosp Med, 2017, 69(5): 2378-2383.
- 46. Tenero L, Piazza M, Sandri M, et al. Effect of montelukast on markers of airway remodeling in children with asthma. Allergy Asthma Proc, 2016, 37(5): 77-83.
- 47. Kuo CH, Yang SN, Kuo HF, et al. Cysteinyl leukotriene receptor antagonist epigenetically modulates cytokine expression and maturation of human myeloid dendritic cells. Pulm Pharmacol Ther, 2016, 39: 28-37.
- 48. Tsai MJ, Wu PH, Sheu CC, et al. Cysteinyl leukotriene receptor antagonists decrease cancer risk in asthma patients. Sci Rep, 2016, 6: 23979.
- 49. 中华医学会儿科学分会呼吸学组. 白三烯受体拮抗剂在儿童常见呼吸系统疾病中的临床应用专家共识. 中华实用儿科临床杂志, 2016, 31(13): 973-977.
- 50. Matsuda M, Tabuchi Y, Nishimura K, et al. Increased expression of CysLT2 receptors in the lung of asthmatic mice and role in allergic responses. Prostaglandins Leukot Essent Fatty Acids, 2018, 131: 24-31.
- 51. Sekioka T, Kadode M, Fujii M, et al. Expression of CysLT2 receptors in asthma lung, and their possible role in bronchoconstriction. Allergol Int, 2015, 64(4): 351-358.
- 52. Gauvreau GM, Boulet LP, FitzGerald JM, et al. A dual Cys LT 1/2 antagonist attenuates allergen‐induced airway responses in subjects with mild allergic asthma. Allergy, 2016, 71(12): 1721-1727.
- 53. Hervás D, Reina J, Yañez A, et al. Epidemiology of hospitalization for acute bronchiolitis in children: differences between RSV and non-RSV bronchiolitis. Eur J Clin Microbiol Infect Dis, 2012, 31(8): 1975-1981.
- 54. Behera AK, Kumar M, Matsuse H, et al. Respiratory syncytial virus induces the expression of 5-lipoxygenase and endothelin-1 in bronchial epithelial cells. Biochem Biophys Res Commun, 1998, 251(3): 704-709.
- 55. Wedde-Beer K, Hu C, Rodriguez MM, et al. Leukotrienes mediate neurogenic inflammation in lungs of young rats infected with respiratory syncytial virus. Am J Physiol Lung Cell Mol Physiol, 2002, 282(5): L1143-L1150.
- 56. Oh JW, Shin SA, Lee HB. Urine leukotriene E4 and eosinophil cationic protein in nasopharyngeal aspiration from young wheezy children. Pediatr Allergy Immunol, 2005, 16(5): 416-421.
- 57. Dalt LD, Callegaro S, Carraro S, et al. Nasal lavage leukotrienes in infants with RSV bronchiolitis. Pediatr Allergy Immunol, 2007, 18(2): 100-104.
- 58. 刘雪茹, 胡艳, 陈和斌, 等. 孟鲁司特钠治疗儿童呼吸道合胞病毒感染毛细支气管炎的疗效及对炎症标志物的影响. 中华医院感染学杂志, 2018, 28(2): 276-279.
- 59. Kearns GL, Lu S, Maganti L, et al. Pharmacokinetics and safety of montelukast oral granules in children 1 to 3 months of age with bronchiolitis. J Clin Pharmacol, 2008, 48(4): 502-511.
- 60. 蔡昀庭, 鲍一笑, 范飞, 等. 婴幼儿喘息急性期联合降阶梯治疗方案中孟鲁司特钠的作用研究. 儿科药学杂志, 2013, 19(7): 6-10.
- 61. Zedan M, Gamil N, El-Assmy M, et al. Montelukast as an episodic modifier for acute viral bronchiolitis: a randomized trial. Allergy Asthma Proc, 2010, 31(2): 147-153.
- 62. Peng WS, Chen X, Yang XY, et al. Systematic review of montelukast's efficacy for preventing post‐bronchiolitis wheezing. Pediatr Allergy Immunol, 2014, 25(2): 143-150.
- 63. Tsubomatsu C, Shintani T, Abe A, et al. Diagnosis and treatment of obstructive sleep apnea syndrome in children. Adv Otolaryngol, 2016, 77: 105-111.
- 64. Tsaoussoglou M, Lianou L, Maragozidis P, et al. Cysteinyl leukotriene receptors in tonsillar B-and T-lymphocytes from children with obstructive sleep apnea. Sleep Med, 2012, 13(7): 879-885.
- 65. Shu Y, Yang D Z, Liang J, et al. Effects of leukotriene D4 on adenoidal T cells in children with obstructive sleep apnea syndrome. Am J Transl Res, 2016, 8(10): 4329.
- 66. Kaditis AG, Alexopoulos E, Chaidas K, et al. Urine concentrations of cysteinyl leukotrienes in children with obstructive sleep-disordered breathing. Chest, 2009, 135(6): 1496-1501.
- 67. 郑国君, 巫小燕, 李悦, 等. 半胱氨酸白三烯表达在阻塞性睡眠呼吸暂停低通气综合征中的临床研究. 中国临床药理学杂志, 2015, 31(21): 2093-2095.
- 68. Sunkonkit K, Sritippayawan S, Veeravikrom M, et al. Urinary cysteinyl leukotriene E4 level and therapeutic response to montelukast in children with mild obstructive sleep apnea. Asian Pac J Allergy Immunol, 2017, 35: 233-238.
- 69. 舒艳. 半胱氨酸白三烯影响 OSAHS 患儿腺样体 T 细胞增殖及凋亡的作用与机制[D]. 重庆医科大学, 2014: 1-92.
- 70. Goldbart AD, Greenberg-Dotan S, Tal A. Montelukast for children with obstructive sleep apnea: a double-blind, placebo-controlled study. Pediatrics, 2012, 130(3): e575-e580.
- 71. Gautier-Veyret E, Bäck M, Arnaud C, et al. Cysteinyl-leukotriene pathway as a new therapeutic target for the treatment of atherosclerosis related to obstructive sleep apnea syndrome. Pharmacol Res, 2018, 134: 311-319.
- 72. Gowda G, Lakshmi S, Parasuramalu BG, et al. A study on allergen sensitivity in patients with allergic rhinitis in Bangalore, India. J Laryngol Otol, 2014, 128(10): 892-896.
- 73. Haberal I, Corey JP. The role of leukotrienes in nasal allergy. Otolaryngol Head Neck Surg, 2003, 129(3): 274-279.
- 74. Hara H, Sugahara K, Hashimoto M, et al. Effectiveness of the leukotriene receptor antagonist pranlukast hydrate for the treatment of sleep disorder in patients with perennial allergic rhinitis. Acta Otolaryngol, 2014, 134(3): 307-313.
- 75. Figueroa DJ, Borish L, Baramki D, et al. Expression of cysteinyl leukotriene synthetic and signaling proteins in inflammatory cells in active seasonal allergic rhinitis. Clin Exp Allergy, 2003, 33(10): 1380-1388.
- 76. Shirasaki H, Kanaizumi E, Watanabe K, et al. Expression and localization of the cysteinyl leukotriene 1 receptor in human nasal mucosa. Clin Exp Allergy, 2002, 32(7): 1007-1012.
- 77. Knapp HR. Reduced allergen-induced nasal congestion and leukotriene synthesis with an orally active 5-lipoxygenase inhibitor. N Engl J Med, 1990, 323(25): 1745-1748.
- 78. 陆忆, 殷敏, 程雷. 白三烯受体拮抗剂孟鲁司特治疗变应性鼻炎的荟萃分析. 中华耳鼻咽喉头颈外科杂志, 2014, 49(9): 659-667.
- 79. Wilson AM, O’Byrne PM. Parameswaran K: Leukotriene receptor antagonists for allergic rhinitis: a systematic review and meta-analysis. Am J Med, 2004, 116: 338-344.
- 80. Chen H, Lou H, Wang Y, et al. Comparison of the efficacy and mechanisms of intranasal budesonide, montelukast, and their combination in treatment of patients with seasonal allergic rhinitis. Int Forum Allergy Rhinol, 2018, 8(11): 1242-1252.
- 81. Xu Y, Zhang J, Wang J. The efficacy and safety of selective H1-antihistamine versus leukotriene receptor antagonist for seasonal allergic rhinitis: a meta-analysis. PloS One, 2014, 9(11): e112815.
- 82. Stevens WW, Peters AT, Hirsch AG, et al. Clinical characteristics of patients with chronic rhinosinusitis with nasal polyps, asthma, and aspirin-exacerbated respiratory disease. J Allergy Clin Immunol Pract, 2017, 5(4): 1061-1070.
- 83. Morales DR, Guthrie B, Lipworth BJ, et al. NSAID-exacerbated respiratory disease: a meta-analysis evaluating prevalence, mean provocative dose of aspirin and increased asthma morbidity. Allergy, 2015, 70(7): 828.
- 84. Laidlaw TM, Boyce JA. Platelets in patients with aspirin-exacerbated respiratory disease. J Allergy Clin Immunol, 2015, 135(6): 1407-1414.
- 85. Baker MG, Negri J, Steinke JW, et al. Increased expression of leukotriene C4 synthase is a feature of circulating CD34+ hematopoietic stem cells but not circulating eosinophils in aspirin-exacerbated respiratory disease (AERD). J Allergy Clin Immunol, 2015, 135(2): AB222.
- 86. Liu T, Kanaoka Y, Barrett NA, et al. Aspirin exacerbated respiratory disease involves a cysteinyl leukotriene-driven IL-33-mediated mast cell activation pathway. J Allergy Clin Immunol, 2016, 137(2): AB200.
- 87. White A, Ludington E, Mehra P, et al. Effect of leukotriene modifier drugs on the safety of oral aspirin challenges. Ann Allergy Asthma Immunol, 2006, 97(5): 688-693.
- 88. Dahlén SE, Malmström K, Nizankowska E, et al. Improvement of aspirin-intolerant asthma by montelukast, a leukotriene antagonist: a randomized, double-blind, placebo-controlled trial. Am J Respir Crit Care Med, 2002, 165: 9-14.
- 89. Schäper C, Noga O, Koch B, et al. Anti-inflammatory properties of montelukast, a leukotriene receptor antagonist in patients with asthma and nasal polyposis. J Investig Allergol Clin Immunol, 2011, 21(1): 51-58.
- 90. Ta V, White AA. Survey-defined patient experiences with aspirin-exacerbated respiratory disease. J Allergy Clin Immunol Pract, 2015, 3(5): 711-718.
- 91. Vogelmeier CF, Criner GJ, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease, 2017 report. GOLD executive summary. Am J Respir Crit Care Med, 2017, 195: 557-582.
- 92. Zanini A, Cherubino F, Zampogna E, et al. Bronchial hyperresponsiveness, airway inflammation, and reversibility in patients with chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis, 2015, 10: 1155-1161.
- 93. Van den Berge M, Vonk JM, Gosman M, et al. Clinical and inflammatory determinants of bronchial hyperresponsiveness in COPD. Eur Respir J, 2012, 40(5): 1098-1105.
- 94. Sethi S, Mahler DA, Marcus P, et al. Inflammation in COPD: implications for management. Am J Med, 2012, 125(12): 1162-1170.
- 95. Andersson CK, Mori M, Bjermer L, et al. Alterations in lung mast cell populations in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 2010, 181(3): 206-217.
- 96. 刘海玲, 胡苏萍, 聂汉祥, 等. 中重度稳定期慢性阻塞性肺疾病患者尿白三烯 E4 测定及临床意义. 医学研究杂志, 2017, 46(2): 119-122,36.
- 97. 曲桂红, 孙志芬, 张媚霞. 孟鲁司特钠治疗中重度稳定期 COPD 的疗效及其对患者白三烯 E4 水平的影响. 中国老年学杂志, 2015, 35(7): 1747-1749.
- 98. Abdel Kawy HS. Montelukast versus dexamethasone treatment in a guinea pig model of chronic pulmonary neutrophilic inflammation. COPD, 2016, 13(4): 455-463.
-
Previous Article
俯卧位通气治疗人感染 H7N9 禽流感致重度急性呼吸窘迫综合征二例报道 -
Next Article
慢性阻塞性肺疾病急性加重期生物标志物的研究进展