Citation: 秦柯, 郭雪君. 姜黄素治疗慢性阻塞性肺疾病的相关机制研究进展. Chinese Journal of Respiratory and Critical Care Medicine, 2020, 19(2): 193-197. doi: 10.7507/1671-6205.201903046 Copy
Copyright © the editorial department of Chinese Journal of Respiratory and Critical Care Medicine of West China Medical Publisher. All rights reserved
1. | Aggarwal BB, Harikumar KB. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int J Biochem Cell Biol, 2009, 41(1): 40-59. |
2. | Borra SK, Mahendra J, Gurumurthy P, et al. Effect of curcumin against oxidation of biomolecules by hydroxyl radicals. J Clin Diagn Res, 2014, 8(10): CC01-5. |
3. | Priyadarsini KI, Maity DK, Naik GH, et al. Role of phenolic O-H and methylene hydrogen on the free radical reactions and antioxidant activity of curcumin. Free Radic Biol Med, 2003, 35(5): 475-484. |
4. | Mohanty C, Das M, Sahoo SK. Emerging role of nanocarriers to increase the solubility and bioavailability of curcumin. Expert Opin Drug Deliv, 2012, 9(11): 1347-1364. |
5. | Pei H, Yang Y, Cui L, et al. Bisdemethoxycurcumin inhibits ovarian cancer via reducing oxidative stress mediated MMPs expressions. Sci Rep, 2016, 6: 28773. |
6. | Zhu JY, Yang X, Chen Y, et al. Curcumin Suppresses Lung Cancer Stem Cells via Inhibiting Wnt/beta-catenin and Sonic Hedgehog Pathways. Phytother Res, 2017, 31(4): 680-688. |
7. | Liang HH, Huang CY, Chou CW, et al. Heat shock protein 27 influences the anti-cancer effect of curcumin in colon cancer cells through ROS production and autophagy activation. Life Sci, 2018, 209: 43-51. |
8. | Ren B, Luo S, Tian X, et al. Curcumin inhibits liver cancer by inhibiting DAMP molecule HSP70 and TLR4 signaling. Oncol Rep, 2018, 40(2): 895-901. |
9. | Tremmel L, Rho O, Slaga TJ, et al. Inhibition of Skin Tumor Promotion by TPA Using a Combination of Topically Applied Ursolic Acid and Curcumin. Mol Carcinog, 2019, 58(2): 185-195. |
10. | Lovelace ES, Polyak SJ. Natural Products as Tools for Defining How Cellular Metabolism Influences Cellular Immune and Inflammatory Function during Chronic Infection. Viruses, 2015, 7(12): 6218-6232. |
11. | Kim Y, Clifton P. Curcumin, cardiometabolic health and dementia. Int J Environ Res Public Health, 2018, 15(10): piiE2093. |
12. | Sharma RA, Gescher AJ, Steward WP. Curcumin: the story so far. Eur J Cancer, 2005, 41(13): 1955-1968. |
13. | Suzuki M, Betsuyaku T, Ito Y, et al. Curcumin attenuates elastase- and cigarette smoke-induced pulmonary emphysema in mice. Am J Physiol Lung Cell Mol Physiol, 2009, 296(4): L614-23. |
14. | Zhang, M, Xie Y, Yan R, et al. Curcumin ameliorates alveolar epithelial injury in a rat model of chronic obstructive pulmonary disease. Life Sci, 2016, 164: 1-8. |
15. | Lelli, D, Sahebkar A, Johnston TP, et al. Curcumin use in pulmonary diseases: State of the art and future perspectives. Pharmacol Res, 2017, 115: 133-148. |
16. | Sreejayan, Rao MN. Nitric oxide scavenging by curcuminoids. J Pharm Pharmacol, 1997, 49(1): 105-107. |
17. | Barnes PJ. Reduced histone deacetylase in COPD: clinical implications. Chest, 2006, 129(1): 151-155. |
18. | Gan L, Li C, Wang J, et al. Curcumin modulates the effect of histone modification on the expression of chemokines by type II alveolar epithelial cells in a rat COPD model. Int J Chron Obstruct Pulmon Dis, 2016, 11: 2765-2773. |
19. | Hirota K, Martin B, Veldhoen M. Development, regulation and functional capacities of Th17 cells. Semin Immunopathol, 2010, 32(1): 3-16. |
20. | Miossec P, Korn T, Kuchroo VK. Interleukin-17 and type 17 helper T cells. N Engl J Med, 2009, 361(9): 888-98. |
21. | Kondelkova K, Vokurkova D, Krejsek J, et al. Regulatory T cells (TREG) and their roles in immune system with respect to immunopathological disorders. Acta Medica (Hradec Kralove), 2010, 53(2): 73-77. |
22. | Vargas-Rojas MI, Ramirez-Venegas A, Limon-Camacho L, et al. Increase of Th17 cells in peripheral blood of patients with chronic obstructive pulmonary disease. Respir Med, 2011, 105(11): 1648-1654. |
23. | Zhang J, Chu S, Zhong X, et al. Increased expression of CD4+IL-17+ cells in the lung tissue of patients with stable chronic obstructive pulmonary disease (COPD) and smokers. Int Immunopharmacol, 2013, 15(1): 58-66. |
24. | Ma C, Ma Z, Fu Q, et al. Curcumin attenuates allergic airway inflammation by regulation of CD4+CD25+ regulatory T cells (Tregs)/Th17 balance in ovalbumin-sensitized mice. Fitoterapia, 2013, 87: 57-64. |
25. | Kim BW, More SV, Yun YS, et al. A novel synthetic compound MCAP suppresses LPS-induced murine microglial activation in vitro via inhibiting NF-kB and p38 MAPK pathways. Acta Pharmacol Sin, 2016, 37(3): 334-343. |
26. | Metcalfe HJ, Lea S, Hughes D, et al. Effects of cigarette smoke on Toll-like receptor (TLR) activation of chronic obstructive pulmonary disease (COPD) macrophages. Clin Exp Immunol, 2014, 176(3): 461-472. |
27. | Sharma S, Chopra K, Kulkarni SK, et al. Resveratrol and curcumin suppress immune response through CD28/CTLA-4 and CD80 co-stimulatory pathway. Clin Exp Immunol, 2007, 147(1): 155-163. |
28. | Yuan J, Liu R, Ma Y, et al. Curcumin Attenuates Airway Inflammation and Airway Remolding by Inhibiting NF-kappaB Signaling and COX-2 in Cigarette Smoke-Induced COPD Mice. Inflammation, 2018, 41(5): 1804-1814. |
29. | Padwal MK, Sarma U, Saha B. Comprehensive logic based analyses of Toll-like receptor 4 signal transduction pathway. PLoS One, 2014, 9(4): e92481. |
30. | Di Stefano A, Ricciardolo FLM, Caramori G, et al. Bronchial inflammation and bacterial load in stable COPD is associated with TLR4 overexpression. Eur Respir J, 2017, 49(5). pii1602006. doi: 10.1183/13993003.02006-2016. Print 2017 May. |
31. | Meng Z, Yan C, Deng Q, et al. Curcumin inhibits LPS-induced inflammation in rat vascular smooth muscle cells in vitro via ROS-relative TLR4-MAPK/NF-kappaB pathways. Acta Pharmacol Sin, 2013, 34(7): 901-911. |
32. | Fu Y, Gao R, Cao Y, et al. Curcumin attenuates inflammatory responses by suppressing TLR4-mediated NF-kappaB signaling pathway in lipopolysaccharide-induced mastitis in mice. Int Immunopharmacol, 2014, 20(1): 54-58. |
33. | Davies KJ. Oxidative stress, antioxidant defenses, and damage removal, repair, and replacement systems. IUBMB Life, 2000, 50(4-5): 279-289. |
34. | Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature, 2000, 408(6809): 239-247. |
35. | Bouayed J, Bohn T. Exogenous antioxidants--Double-edged swords in cellular redox state: Health beneficial effects at physiologic doses versus deleterious effects at high doses. Oxid Med Cell Longev, 2010, 3(4): 228-237. |
36. | Rahman I. Antioxidant therapeutic advances in COPD. Ther Adv Respir Dis, 2008, 2(6): 351-374. |
37. | Miriyala S, Panchatcharam M, Rengarajulu P. Cardioprotective effects of curcumin. Adv Exp Med Biol, 2007, 595: 359-377. |
38. | Abreu CC, Cardozo LF, Mafra D. Could physical exercises modulate Nrf2-Keap1 pathway in chronic kidney disease?. Med Hypotheses, 2015, 84(1): 44-46. |
39. | Lin XP, Xue C, Zhang JM, et al. Curcumin Inhibits Lipopolysaccharide-Induced Mucin 5AC Hypersecretion and Airway Inflammation via Nuclear Factor Erythroid 2-Related Factor 2. Chin Med J (Engl), 2018, 131(14): 1686-1693. |
40. | Garcia-Lucio J, Peinado VI, de Jover L, et al. Imbalance between endothelial damage and repair capacity in chronic obstructive pulmonary disease. PLoS One, 2018, 13(4): e0195724. |
41. | 杨福柏. 姜黄素对放射性血管内皮损伤的保护作用. 中华劳动卫生职业病杂志, 2011, 29(11): 846-848. |
42. | Sun Y, Hu X, Hu G, et al. Curcumin Attenuates Hydrogen Peroxide-Induced Premature Senescence via the Activation of SIRT1 in Human Umbilical Vein Endothelial Cells. Biol Pharm Bull, 2015, 38(8): 1134-1141. |
43. | Chen D, Tao X, Wang Y, et al. Curcumin accelerates reendothelialization and ameliorates intimal hyperplasia in balloon-injured rat carotid artery via the upregulation of endothelial cell autophagy. Int J Mol Med, 2015, 36(6): 1563-1571. |
44. | Han J, Pan XY, Xu Y, et al. Curcumin induces autophagy to protect vascular endothelial cell survival from oxidative stress damage. Autophagy, 2012, 8(5): 812-825. |
45. | Yang Y, Duan W, Liang Z, et al. Curcumin attenuates endothelial cell oxidative stress injury through Notch signaling inhibition. Cell Signal, 2013, 25(3): 615-629. |
46. | Sundar Rajan S, Srinivasan V, Balasubramanyam M, et al. Endoplasmic reticulum (ER) stress & diabetes. Indian J Med Res, 2007, 125(3): 411-424. |
47. | He B, Chen Q, Zhou D, et al. Role of reciprocal interaction between autophagy and endoplasmic reticulum stress in apoptosis of human bronchial epithelial cells induced by cigarette smoke extract. IUBMB Life, 2019, 71(1): 66-80. |
48. | Yuan T, Luo BL, Wei TH, et al. Salubrinal protects against cigarette smoke extract-induced HBEpC apoptosis likely via regulating the activity of PERK-eIF2alpha signaling pathway. Arch Med Res, 2012, 43(7): 522-529. |
49. | Shinkai Y, Yamamoto C, Kaji T. Lead induces the expression of endoplasmic reticulum chaperones GRP78 and GRP94 in vascular endothelial cells via the JNK-AP-1 pathway. Toxicol Sci, 2010, 114(2): 378-386. |
50. | Yodkeeree S, Chaiwangyen W, Garbisa S, et al. Curcumin, demethoxycurcumin and bisdemethoxycurcumin differentially inhibit cancer cell invasion through the down-regulation of MMPs and uPA. J Nutr Biochem, 2009, 20(2): 87-95. |
51. | Barnes PJ. Histone deacetylase-2 and airway disease. Ther Adv Respir Dis, 2009, 3(5): 235-243. |
52. | Lim JH, Kwon TK. Curcumin inhibits phorbol myristate acetate (PMA)-induced MCP-1 expression by inhibiting ERK and NF-kappaB transcriptional activity. Food Chem Toxicol, 2010, 48(1): 47-52. |
53. | Rennolds J, Malireddy S, Hassan F, et al. Curcumin regulates airway epithelial cell cytokine responses to the pollutant cadmium. Biochem Biophys Res Commun, 2012, 417(1): 256-261. |
54. | Ito K, Yamamura S, Essilfie-Quaye S, et al. Histone deacetylase 2-mediated deacetylation of the glucocorticoid receptor enables NF-kappaB suppression. J Exp Med, 2006, 203(1): 7-13. |
55. | Meja KK, Rajendrasozhan S, Adenuga D, et al. Curcumin restores corticosteroid function in monocytes exposed to oxidants by maintaining HDAC2. Am J Respir Cell Mol Biol, 2008, 39(3): 312-323. |
56. | Kurien BT, Singh A, Matsumoto H, et al. Improving the solubility and pharmacological efficacy of curcumin by heat treatment. Assay Drug Dev Technol, 2007, 5(4): 567-576. |
57. | Gaur PK, Mishra S, Bajpai M, et al. Enhanced oral bioavailability of efavirenz by solid lipid nanoparticles: in vitro drug release and pharmacokinetics studies. Biomed Res Int, 2014, 2014: 363404. |
- 1. Aggarwal BB, Harikumar KB. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int J Biochem Cell Biol, 2009, 41(1): 40-59.
- 2. Borra SK, Mahendra J, Gurumurthy P, et al. Effect of curcumin against oxidation of biomolecules by hydroxyl radicals. J Clin Diagn Res, 2014, 8(10): CC01-5.
- 3. Priyadarsini KI, Maity DK, Naik GH, et al. Role of phenolic O-H and methylene hydrogen on the free radical reactions and antioxidant activity of curcumin. Free Radic Biol Med, 2003, 35(5): 475-484.
- 4. Mohanty C, Das M, Sahoo SK. Emerging role of nanocarriers to increase the solubility and bioavailability of curcumin. Expert Opin Drug Deliv, 2012, 9(11): 1347-1364.
- 5. Pei H, Yang Y, Cui L, et al. Bisdemethoxycurcumin inhibits ovarian cancer via reducing oxidative stress mediated MMPs expressions. Sci Rep, 2016, 6: 28773.
- 6. Zhu JY, Yang X, Chen Y, et al. Curcumin Suppresses Lung Cancer Stem Cells via Inhibiting Wnt/beta-catenin and Sonic Hedgehog Pathways. Phytother Res, 2017, 31(4): 680-688.
- 7. Liang HH, Huang CY, Chou CW, et al. Heat shock protein 27 influences the anti-cancer effect of curcumin in colon cancer cells through ROS production and autophagy activation. Life Sci, 2018, 209: 43-51.
- 8. Ren B, Luo S, Tian X, et al. Curcumin inhibits liver cancer by inhibiting DAMP molecule HSP70 and TLR4 signaling. Oncol Rep, 2018, 40(2): 895-901.
- 9. Tremmel L, Rho O, Slaga TJ, et al. Inhibition of Skin Tumor Promotion by TPA Using a Combination of Topically Applied Ursolic Acid and Curcumin. Mol Carcinog, 2019, 58(2): 185-195.
- 10. Lovelace ES, Polyak SJ. Natural Products as Tools for Defining How Cellular Metabolism Influences Cellular Immune and Inflammatory Function during Chronic Infection. Viruses, 2015, 7(12): 6218-6232.
- 11. Kim Y, Clifton P. Curcumin, cardiometabolic health and dementia. Int J Environ Res Public Health, 2018, 15(10): piiE2093.
- 12. Sharma RA, Gescher AJ, Steward WP. Curcumin: the story so far. Eur J Cancer, 2005, 41(13): 1955-1968.
- 13. Suzuki M, Betsuyaku T, Ito Y, et al. Curcumin attenuates elastase- and cigarette smoke-induced pulmonary emphysema in mice. Am J Physiol Lung Cell Mol Physiol, 2009, 296(4): L614-23.
- 14. Zhang, M, Xie Y, Yan R, et al. Curcumin ameliorates alveolar epithelial injury in a rat model of chronic obstructive pulmonary disease. Life Sci, 2016, 164: 1-8.
- 15. Lelli, D, Sahebkar A, Johnston TP, et al. Curcumin use in pulmonary diseases: State of the art and future perspectives. Pharmacol Res, 2017, 115: 133-148.
- 16. Sreejayan, Rao MN. Nitric oxide scavenging by curcuminoids. J Pharm Pharmacol, 1997, 49(1): 105-107.
- 17. Barnes PJ. Reduced histone deacetylase in COPD: clinical implications. Chest, 2006, 129(1): 151-155.
- 18. Gan L, Li C, Wang J, et al. Curcumin modulates the effect of histone modification on the expression of chemokines by type II alveolar epithelial cells in a rat COPD model. Int J Chron Obstruct Pulmon Dis, 2016, 11: 2765-2773.
- 19. Hirota K, Martin B, Veldhoen M. Development, regulation and functional capacities of Th17 cells. Semin Immunopathol, 2010, 32(1): 3-16.
- 20. Miossec P, Korn T, Kuchroo VK. Interleukin-17 and type 17 helper T cells. N Engl J Med, 2009, 361(9): 888-98.
- 21. Kondelkova K, Vokurkova D, Krejsek J, et al. Regulatory T cells (TREG) and their roles in immune system with respect to immunopathological disorders. Acta Medica (Hradec Kralove), 2010, 53(2): 73-77.
- 22. Vargas-Rojas MI, Ramirez-Venegas A, Limon-Camacho L, et al. Increase of Th17 cells in peripheral blood of patients with chronic obstructive pulmonary disease. Respir Med, 2011, 105(11): 1648-1654.
- 23. Zhang J, Chu S, Zhong X, et al. Increased expression of CD4+IL-17+ cells in the lung tissue of patients with stable chronic obstructive pulmonary disease (COPD) and smokers. Int Immunopharmacol, 2013, 15(1): 58-66.
- 24. Ma C, Ma Z, Fu Q, et al. Curcumin attenuates allergic airway inflammation by regulation of CD4+CD25+ regulatory T cells (Tregs)/Th17 balance in ovalbumin-sensitized mice. Fitoterapia, 2013, 87: 57-64.
- 25. Kim BW, More SV, Yun YS, et al. A novel synthetic compound MCAP suppresses LPS-induced murine microglial activation in vitro via inhibiting NF-kB and p38 MAPK pathways. Acta Pharmacol Sin, 2016, 37(3): 334-343.
- 26. Metcalfe HJ, Lea S, Hughes D, et al. Effects of cigarette smoke on Toll-like receptor (TLR) activation of chronic obstructive pulmonary disease (COPD) macrophages. Clin Exp Immunol, 2014, 176(3): 461-472.
- 27. Sharma S, Chopra K, Kulkarni SK, et al. Resveratrol and curcumin suppress immune response through CD28/CTLA-4 and CD80 co-stimulatory pathway. Clin Exp Immunol, 2007, 147(1): 155-163.
- 28. Yuan J, Liu R, Ma Y, et al. Curcumin Attenuates Airway Inflammation and Airway Remolding by Inhibiting NF-kappaB Signaling and COX-2 in Cigarette Smoke-Induced COPD Mice. Inflammation, 2018, 41(5): 1804-1814.
- 29. Padwal MK, Sarma U, Saha B. Comprehensive logic based analyses of Toll-like receptor 4 signal transduction pathway. PLoS One, 2014, 9(4): e92481.
- 30. Di Stefano A, Ricciardolo FLM, Caramori G, et al. Bronchial inflammation and bacterial load in stable COPD is associated with TLR4 overexpression. Eur Respir J, 2017, 49(5). pii1602006. doi: 10.1183/13993003.02006-2016. Print 2017 May.
- 31. Meng Z, Yan C, Deng Q, et al. Curcumin inhibits LPS-induced inflammation in rat vascular smooth muscle cells in vitro via ROS-relative TLR4-MAPK/NF-kappaB pathways. Acta Pharmacol Sin, 2013, 34(7): 901-911.
- 32. Fu Y, Gao R, Cao Y, et al. Curcumin attenuates inflammatory responses by suppressing TLR4-mediated NF-kappaB signaling pathway in lipopolysaccharide-induced mastitis in mice. Int Immunopharmacol, 2014, 20(1): 54-58.
- 33. Davies KJ. Oxidative stress, antioxidant defenses, and damage removal, repair, and replacement systems. IUBMB Life, 2000, 50(4-5): 279-289.
- 34. Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature, 2000, 408(6809): 239-247.
- 35. Bouayed J, Bohn T. Exogenous antioxidants--Double-edged swords in cellular redox state: Health beneficial effects at physiologic doses versus deleterious effects at high doses. Oxid Med Cell Longev, 2010, 3(4): 228-237.
- 36. Rahman I. Antioxidant therapeutic advances in COPD. Ther Adv Respir Dis, 2008, 2(6): 351-374.
- 37. Miriyala S, Panchatcharam M, Rengarajulu P. Cardioprotective effects of curcumin. Adv Exp Med Biol, 2007, 595: 359-377.
- 38. Abreu CC, Cardozo LF, Mafra D. Could physical exercises modulate Nrf2-Keap1 pathway in chronic kidney disease?. Med Hypotheses, 2015, 84(1): 44-46.
- 39. Lin XP, Xue C, Zhang JM, et al. Curcumin Inhibits Lipopolysaccharide-Induced Mucin 5AC Hypersecretion and Airway Inflammation via Nuclear Factor Erythroid 2-Related Factor 2. Chin Med J (Engl), 2018, 131(14): 1686-1693.
- 40. Garcia-Lucio J, Peinado VI, de Jover L, et al. Imbalance between endothelial damage and repair capacity in chronic obstructive pulmonary disease. PLoS One, 2018, 13(4): e0195724.
- 41. 杨福柏. 姜黄素对放射性血管内皮损伤的保护作用. 中华劳动卫生职业病杂志, 2011, 29(11): 846-848.
- 42. Sun Y, Hu X, Hu G, et al. Curcumin Attenuates Hydrogen Peroxide-Induced Premature Senescence via the Activation of SIRT1 in Human Umbilical Vein Endothelial Cells. Biol Pharm Bull, 2015, 38(8): 1134-1141.
- 43. Chen D, Tao X, Wang Y, et al. Curcumin accelerates reendothelialization and ameliorates intimal hyperplasia in balloon-injured rat carotid artery via the upregulation of endothelial cell autophagy. Int J Mol Med, 2015, 36(6): 1563-1571.
- 44. Han J, Pan XY, Xu Y, et al. Curcumin induces autophagy to protect vascular endothelial cell survival from oxidative stress damage. Autophagy, 2012, 8(5): 812-825.
- 45. Yang Y, Duan W, Liang Z, et al. Curcumin attenuates endothelial cell oxidative stress injury through Notch signaling inhibition. Cell Signal, 2013, 25(3): 615-629.
- 46. Sundar Rajan S, Srinivasan V, Balasubramanyam M, et al. Endoplasmic reticulum (ER) stress & diabetes. Indian J Med Res, 2007, 125(3): 411-424.
- 47. He B, Chen Q, Zhou D, et al. Role of reciprocal interaction between autophagy and endoplasmic reticulum stress in apoptosis of human bronchial epithelial cells induced by cigarette smoke extract. IUBMB Life, 2019, 71(1): 66-80.
- 48. Yuan T, Luo BL, Wei TH, et al. Salubrinal protects against cigarette smoke extract-induced HBEpC apoptosis likely via regulating the activity of PERK-eIF2alpha signaling pathway. Arch Med Res, 2012, 43(7): 522-529.
- 49. Shinkai Y, Yamamoto C, Kaji T. Lead induces the expression of endoplasmic reticulum chaperones GRP78 and GRP94 in vascular endothelial cells via the JNK-AP-1 pathway. Toxicol Sci, 2010, 114(2): 378-386.
- 50. Yodkeeree S, Chaiwangyen W, Garbisa S, et al. Curcumin, demethoxycurcumin and bisdemethoxycurcumin differentially inhibit cancer cell invasion through the down-regulation of MMPs and uPA. J Nutr Biochem, 2009, 20(2): 87-95.
- 51. Barnes PJ. Histone deacetylase-2 and airway disease. Ther Adv Respir Dis, 2009, 3(5): 235-243.
- 52. Lim JH, Kwon TK. Curcumin inhibits phorbol myristate acetate (PMA)-induced MCP-1 expression by inhibiting ERK and NF-kappaB transcriptional activity. Food Chem Toxicol, 2010, 48(1): 47-52.
- 53. Rennolds J, Malireddy S, Hassan F, et al. Curcumin regulates airway epithelial cell cytokine responses to the pollutant cadmium. Biochem Biophys Res Commun, 2012, 417(1): 256-261.
- 54. Ito K, Yamamura S, Essilfie-Quaye S, et al. Histone deacetylase 2-mediated deacetylation of the glucocorticoid receptor enables NF-kappaB suppression. J Exp Med, 2006, 203(1): 7-13.
- 55. Meja KK, Rajendrasozhan S, Adenuga D, et al. Curcumin restores corticosteroid function in monocytes exposed to oxidants by maintaining HDAC2. Am J Respir Cell Mol Biol, 2008, 39(3): 312-323.
- 56. Kurien BT, Singh A, Matsumoto H, et al. Improving the solubility and pharmacological efficacy of curcumin by heat treatment. Assay Drug Dev Technol, 2007, 5(4): 567-576.
- 57. Gaur PK, Mishra S, Bajpai M, et al. Enhanced oral bioavailability of efavirenz by solid lipid nanoparticles: in vitro drug release and pharmacokinetics studies. Biomed Res Int, 2014, 2014: 363404.
-
Previous Article
以自发性血气胸为首发表现的肺隔离症合并肺曲霉病一例 -
Next Article
高空、高原、地下空间环境对呼吸功能的影响