Citation: 尤容, 吴艳, 卞涛. 早期慢性阻塞性肺疾病影像学表型的定量评估研究进展. Chinese Journal of Respiratory and Critical Care Medicine, 2022, 21(6): 446-451. doi: 10.7507/1671-6205.202201017 Copy
Copyright © the editorial department of Chinese Journal of Respiratory and Critical Care Medicine of West China Medical Publisher. All rights reserved
1. | Zhou M, Wang H, Zeng X, et al. Mortality, morbidity, and risk factors in China and its provinces, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017 [published correction appears in Lancet, 2020 Jul 4, 396(10243): 26]. Lancet, 2019, 394(10204): 1145-1158. |
2. | Wan ES, Balte P, Schwartz JE, et al. Association between preserved ratio impaired spirometry and clinical outcomes in US adults. JAMA, 2021, 326(22): 2287-2298. |
3. | Martinez FJ, Han MK, Allinson JP, et al. At the root: defining and halting progression of early chronic obstructive pulmonary disease [published correction appears in Am J Respir Crit Care Med, 2018, 198(11): 1463]. Am J Respir Crit Care Med, 2018, 197(12): 1540-1551. |
4. | Çolak Y, Afzal S, Nordestgaard BG, et al. Importance of early COPD in Young adults for development of clinical COPD: findings from the Copenhagen General Population Study. Am J Respir Crit Care Med, 2021, 203(10): 1245-1256. |
5. | Han MK, Agusti A, Celli BR, et al. From GOLD 0 to Pre-COPD. Am J Respir Crit Care Med, 2021, 203(4): 414-423. |
6. | Laucho-Contreras ME, Cohen-Todd M. Early diagnosis of COPD: myth or a true perspective. Eur Respir Rev, 2020, 29(158): 200131. Published 2020 Dec 2. doi: 10.1183/16000617.0131-2020. |
7. | Çolak Y, Afzal S, Nordestgaard BG, et al. Prevalence, Characteristics, and Prognosis of Early Chronic Obstructive Pulmonary Disease. The Copenhagen General Population Study. Am J Respir Crit Care Med, 2020, 201(6): 671-680. |
8. | Jenkins CR, Jones PW, Calverley PM, et al. Efficacy of salmeterol/fluticasone propionate by GOLD stage of chronic obstructive pulmonary disease: analysis from the randomised, placebo-controlled TORCH study. Respir Res, 2009, 10(1): 59. |
9. | Fazleen A, Wilkinson T. Early COPD: current evidence for diagnosis and management. Ther Adv Respir Dis, 2020, 14: 1753466620942128. |
10. | Larsson K, Janson C, Ställberg B, et al. Impact of COPD diagnosis timing on clinical and economic outcomes: the ARCTIC observational cohort study. Int J Chron Obstruct Pulmon Dis, 2019, 14: 995-1008. |
11. | Martinez FJ, Agusti A, Celli BR, et al. Treatment trials in young patients with chronic obstructive pulmonary disease and pre-chronic obstructive pulmonary disease patients: time to move forward. Am J Respir Crit Care Med, 2022, 205(3): 275-287. |
12. | Miller A, Brown LK. Comments on "COPDGene 2019: Redefining the Diagnosis of Chronic Obstructive Pulmonary Disease". Chronic Obstr Pulm Dis, 2020, 7(2): 79-81. |
13. | Sieren JP, Newell JD Jr, Barr RG, et al. SPIROMICS Protocol for Multicenter Quantitative Computed Tomography to Phenotype the Lungs. Am J Respir Crit Care Med, 2016, 194(7): 794-806. |
14. | Ostridge K, Gove K, Paas KHW, et al. Using novel computed tomography analysis to describe the contribution and distribution of emphysema and small airways disease in chronic obstructive pulmonary disease. Ann Am Thorac Soc, 2019, 16(8): 990-997. |
15. | Lowe KE, Regan EA, Anzueto A, et al. COPDGene® 2019: Redefining the Diagnosis of Chronic Obstructive Pulmonary Disease. Chronic Obstr Pulm Dis, 2019, 6(5): 384-399. |
16. | Han MK, Tayob N, Murray S, et al. Association between Emphysema and Chronic Obstructive Pulmonary Disease Outcomes in the COPDGene and SPIROMICS Cohorts: A Post Hoc Analysis of Two Clinical Trials. Am J Respir Crit Care Med, 2018, 198(2): 265-267. |
17. | Brown MS, Kim HJ, Abtin F, et al. Reproducibility of lung and lobar volume measurements using computed tomography. Acad Radiol, 2010, 17(3): 316-322. |
18. | Tanabe N, Sato S, Suki B, et al. Fractal analysis of lung structure in chronic obstructive pulmonary disease. Front Physiol, 2020, 11: 603197. |
19. | Virdee S, Tan WC, Hogg JC, et al. Spatial dependence of CT emphysema in chronic obstructive pulmonary disease quantified by using join-count statistics. Radiology, 2021, 301(3): 702-709. |
20. | Nambu A, Zach J, Schroeder J, et al. Quantitative computed tomography measurements to evaluate airway disease in chronic obstructive pulmonary disease: Relationship to physiological measurements, clinical index and visual assessment of airway disease. Eur J Radiol, 2016, 85(11): 2144-2151. |
21. | Suh YJ, McDonald MN, Washko GR, et al. Lung, fat and bone: increased adiponectin associates with the combination of smoking-related lung disease and osteoporosis. Chronic Obstr Pulm Dis, 2018, 5(2): 134-143. |
22. | 刘艳, 郑国利, 卜春红, 等. CT定量检测在慢性阻塞性肺疾病中的诊断意义. 新疆医科大学学报, 2021, 44(8): 927-931. |
23. | Charbonnier JP, Pompe E, Moore C, et al. Airway wall thickening on CT: relation to smoking status and severity of COPD. Respir Med, 2019, 146: 36-41. |
24. | Hasegawa M, Nasuhara Y, Onodera Y, et al. Airflow limitation and airway dimensions in chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 2006, 173(12): 1309-1315. |
25. | Kirby M, Tanabe N, Tan WC, et al. Total airway count on computed tomography and the risk of chronic obstructive pulmonary disease progression. Findings from a population-based study. Am J Respir Crit Care Med, 2018, 197(1): 56-65. |
26. | Kirby M, Tanabe N, Vasilescu DM, et al. Computed tomography total airway count is associated with the number of micro-computed tomography terminal bronchioles. Am J Respir Crit Care Med, 2020, 201(5): 613-615. |
27. | Bhatt SP, Bodduluri S, Kizhakke Puliyakote AS, et al. Structural airway imaging metrics are differentially associated with persistent chronic bronchitis. Thorax, 2021, 76(4): 343-349. |
28. | Bodduluri S, Kizhakke Puliyakote A, Nakhmani A, et al. Computed tomography-based airway surface area-to-volume ratio for phenotyping airway remodeling in chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 2021, 203(2): 185-191. |
29. | Smith BM, Kirby M, Hoffman EA, et al. Association of dysanapsis with chronic obstructive pulmonary disease among older adults. JAMA, 2020, 323(22): 2268-2280. |
30. | Vameghestahbanati M, Kirby M, Tanabe N, et al. Central Airway Tree Dysanapsis Extends to the Peripheral Airways. Am J Respir Crit Care Med, 2021, 203(3): 378-381. |
31. | Hogg JC, Chu F, Utokaparch S, et al. The nature of small-airway obstruction in chronic obstructive pulmonary disease. N Engl J Med, 2004, 350(26): 2645-2653. |
32. | Diaz AA, Rahaghi FN, Ross JC, et al. Understanding the contribution of native tracheobronchial structure to lung function: CT assessment of airway morphology in never smokers. Respir Res, 2015, 16(1): 23. |
33. | Berghen N, Dekoster K, Marien E, et al. Radiosafe micro-computed tomography for longitudinal evaluation of murine disease models. Sci Rep, 2019, 9(1): 17598. |
34. | Tanabe N, Shima H, Sato S, et al. Direct evaluation of peripheral airways using ultra-high-resolution CT in chronic obstructive pulmonary disease. Eur J Radiol, 2019, 120: 108687. |
35. | Vasilescu DM, Martinez FJ, Marchetti N, et al. Noninvasive imaging biomarker identifies small airway damage in severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 2019, 200(5): 575-581. |
36. | Galbán CJ, Han MK, Boes JL, et al. Computed tomography-based biomarker provides unique signature for diagnosis of COPD phenotypes and disease progression. Nat Med, 2012, 18(11): 1711-1715. |
37. | Pompe E, van Rikxoort EM, Schmidt M, et al. Parametric response mapping adds value to current computed tomography biomarkers in diagnosing chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 2015, 191(9): 1084-1086. |
38. | Bhatt SP, Soler X, Wang X, et al. Association between functional small airway disease and FEV1 decline in chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 2016, 194(2): 178-184. |
39. | Criner RN, Hatt CR, Galbán CJ, et al. Relationship between diffusion capacity and small airway abnormality in COPDGene. Respir Res, 2019, 20(1): 269. |
40. | Young AL, Bragman FJS, Rangelov B, et al. Disease progression modeling in chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 2020, 201(3): 294-302. |
41. | Tanabe N, Shimizu K, Terada K, et al. Central airway and peripheral lung structures in airway disease-dominant COPD. ERJ Open Res, 2021, 7(1): 00672-2020. |
42. | Labaki WW, Gu T, Murray S, et al. Voxel-wise longitudinal parametric response mapping analysis of chest computed tomography in smokers. Acad Radiol, 2019, 26(2): 217-223. |
43. | Saruya S, Yamashiro T, Matsuoka S, et al. Decrease in small pulmonary vessels on chest computed tomography in light smokers without copd: an early change, but correlated with smoking index. Lung, 2017, 195(2): 179-184. |
44. | Synn AJ, Li W, San José Estépar R, et al. Pulmonary vascular pruning on computed tomography and risk of death in the Framingham Heart Study. Am J Respir Crit Care Med, 2021, 203(2): 251-254. |
45. | Wang J, Li MJ, Chang C. Quantitative computed tomography measurement of cross-sectional area of small pulmonary vessels in asthmatic patients. Chin Med J(Engl), 2019, 132(16): 1903-1908. |
46. | Yang T, Chen C, Chen Z. The CT pulmonary vascular parameters and disease severity in COPD patients on acute exacerbation: a correlation analysis. BMC Pulm Med, 2021, 21(1): 34. |
47. | Synn AJ, Li W, San José Estépar R, et al. Radiographic pulmonary vessel volume, lung function and airways disease in the Framingham Heart Study. Eur Respir J, 2019, 54(3): 1900408. |
48. | Cho YH, Lee SM, Seo JB, et al. Quantitative assessment of pulmonary vascular alterations in chronic obstructive lung disease: Associations with pulmonary function test and survival in the KOLD cohort. Eur J Radiol, 2018, 108: 276-282. |
- 1. Zhou M, Wang H, Zeng X, et al. Mortality, morbidity, and risk factors in China and its provinces, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017 [published correction appears in Lancet, 2020 Jul 4, 396(10243): 26]. Lancet, 2019, 394(10204): 1145-1158.
- 2. Wan ES, Balte P, Schwartz JE, et al. Association between preserved ratio impaired spirometry and clinical outcomes in US adults. JAMA, 2021, 326(22): 2287-2298.
- 3. Martinez FJ, Han MK, Allinson JP, et al. At the root: defining and halting progression of early chronic obstructive pulmonary disease [published correction appears in Am J Respir Crit Care Med, 2018, 198(11): 1463]. Am J Respir Crit Care Med, 2018, 197(12): 1540-1551.
- 4. Çolak Y, Afzal S, Nordestgaard BG, et al. Importance of early COPD in Young adults for development of clinical COPD: findings from the Copenhagen General Population Study. Am J Respir Crit Care Med, 2021, 203(10): 1245-1256.
- 5. Han MK, Agusti A, Celli BR, et al. From GOLD 0 to Pre-COPD. Am J Respir Crit Care Med, 2021, 203(4): 414-423.
- 6. Laucho-Contreras ME, Cohen-Todd M. Early diagnosis of COPD: myth or a true perspective. Eur Respir Rev, 2020, 29(158): 200131. Published 2020 Dec 2. doi: 10.1183/16000617.0131-2020.
- 7. Çolak Y, Afzal S, Nordestgaard BG, et al. Prevalence, Characteristics, and Prognosis of Early Chronic Obstructive Pulmonary Disease. The Copenhagen General Population Study. Am J Respir Crit Care Med, 2020, 201(6): 671-680.
- 8. Jenkins CR, Jones PW, Calverley PM, et al. Efficacy of salmeterol/fluticasone propionate by GOLD stage of chronic obstructive pulmonary disease: analysis from the randomised, placebo-controlled TORCH study. Respir Res, 2009, 10(1): 59.
- 9. Fazleen A, Wilkinson T. Early COPD: current evidence for diagnosis and management. Ther Adv Respir Dis, 2020, 14: 1753466620942128.
- 10. Larsson K, Janson C, Ställberg B, et al. Impact of COPD diagnosis timing on clinical and economic outcomes: the ARCTIC observational cohort study. Int J Chron Obstruct Pulmon Dis, 2019, 14: 995-1008.
- 11. Martinez FJ, Agusti A, Celli BR, et al. Treatment trials in young patients with chronic obstructive pulmonary disease and pre-chronic obstructive pulmonary disease patients: time to move forward. Am J Respir Crit Care Med, 2022, 205(3): 275-287.
- 12. Miller A, Brown LK. Comments on "COPDGene 2019: Redefining the Diagnosis of Chronic Obstructive Pulmonary Disease". Chronic Obstr Pulm Dis, 2020, 7(2): 79-81.
- 13. Sieren JP, Newell JD Jr, Barr RG, et al. SPIROMICS Protocol for Multicenter Quantitative Computed Tomography to Phenotype the Lungs. Am J Respir Crit Care Med, 2016, 194(7): 794-806.
- 14. Ostridge K, Gove K, Paas KHW, et al. Using novel computed tomography analysis to describe the contribution and distribution of emphysema and small airways disease in chronic obstructive pulmonary disease. Ann Am Thorac Soc, 2019, 16(8): 990-997.
- 15. Lowe KE, Regan EA, Anzueto A, et al. COPDGene® 2019: Redefining the Diagnosis of Chronic Obstructive Pulmonary Disease. Chronic Obstr Pulm Dis, 2019, 6(5): 384-399.
- 16. Han MK, Tayob N, Murray S, et al. Association between Emphysema and Chronic Obstructive Pulmonary Disease Outcomes in the COPDGene and SPIROMICS Cohorts: A Post Hoc Analysis of Two Clinical Trials. Am J Respir Crit Care Med, 2018, 198(2): 265-267.
- 17. Brown MS, Kim HJ, Abtin F, et al. Reproducibility of lung and lobar volume measurements using computed tomography. Acad Radiol, 2010, 17(3): 316-322.
- 18. Tanabe N, Sato S, Suki B, et al. Fractal analysis of lung structure in chronic obstructive pulmonary disease. Front Physiol, 2020, 11: 603197.
- 19. Virdee S, Tan WC, Hogg JC, et al. Spatial dependence of CT emphysema in chronic obstructive pulmonary disease quantified by using join-count statistics. Radiology, 2021, 301(3): 702-709.
- 20. Nambu A, Zach J, Schroeder J, et al. Quantitative computed tomography measurements to evaluate airway disease in chronic obstructive pulmonary disease: Relationship to physiological measurements, clinical index and visual assessment of airway disease. Eur J Radiol, 2016, 85(11): 2144-2151.
- 21. Suh YJ, McDonald MN, Washko GR, et al. Lung, fat and bone: increased adiponectin associates with the combination of smoking-related lung disease and osteoporosis. Chronic Obstr Pulm Dis, 2018, 5(2): 134-143.
- 22. 刘艳, 郑国利, 卜春红, 等. CT定量检测在慢性阻塞性肺疾病中的诊断意义. 新疆医科大学学报, 2021, 44(8): 927-931.
- 23. Charbonnier JP, Pompe E, Moore C, et al. Airway wall thickening on CT: relation to smoking status and severity of COPD. Respir Med, 2019, 146: 36-41.
- 24. Hasegawa M, Nasuhara Y, Onodera Y, et al. Airflow limitation and airway dimensions in chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 2006, 173(12): 1309-1315.
- 25. Kirby M, Tanabe N, Tan WC, et al. Total airway count on computed tomography and the risk of chronic obstructive pulmonary disease progression. Findings from a population-based study. Am J Respir Crit Care Med, 2018, 197(1): 56-65.
- 26. Kirby M, Tanabe N, Vasilescu DM, et al. Computed tomography total airway count is associated with the number of micro-computed tomography terminal bronchioles. Am J Respir Crit Care Med, 2020, 201(5): 613-615.
- 27. Bhatt SP, Bodduluri S, Kizhakke Puliyakote AS, et al. Structural airway imaging metrics are differentially associated with persistent chronic bronchitis. Thorax, 2021, 76(4): 343-349.
- 28. Bodduluri S, Kizhakke Puliyakote A, Nakhmani A, et al. Computed tomography-based airway surface area-to-volume ratio for phenotyping airway remodeling in chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 2021, 203(2): 185-191.
- 29. Smith BM, Kirby M, Hoffman EA, et al. Association of dysanapsis with chronic obstructive pulmonary disease among older adults. JAMA, 2020, 323(22): 2268-2280.
- 30. Vameghestahbanati M, Kirby M, Tanabe N, et al. Central Airway Tree Dysanapsis Extends to the Peripheral Airways. Am J Respir Crit Care Med, 2021, 203(3): 378-381.
- 31. Hogg JC, Chu F, Utokaparch S, et al. The nature of small-airway obstruction in chronic obstructive pulmonary disease. N Engl J Med, 2004, 350(26): 2645-2653.
- 32. Diaz AA, Rahaghi FN, Ross JC, et al. Understanding the contribution of native tracheobronchial structure to lung function: CT assessment of airway morphology in never smokers. Respir Res, 2015, 16(1): 23.
- 33. Berghen N, Dekoster K, Marien E, et al. Radiosafe micro-computed tomography for longitudinal evaluation of murine disease models. Sci Rep, 2019, 9(1): 17598.
- 34. Tanabe N, Shima H, Sato S, et al. Direct evaluation of peripheral airways using ultra-high-resolution CT in chronic obstructive pulmonary disease. Eur J Radiol, 2019, 120: 108687.
- 35. Vasilescu DM, Martinez FJ, Marchetti N, et al. Noninvasive imaging biomarker identifies small airway damage in severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 2019, 200(5): 575-581.
- 36. Galbán CJ, Han MK, Boes JL, et al. Computed tomography-based biomarker provides unique signature for diagnosis of COPD phenotypes and disease progression. Nat Med, 2012, 18(11): 1711-1715.
- 37. Pompe E, van Rikxoort EM, Schmidt M, et al. Parametric response mapping adds value to current computed tomography biomarkers in diagnosing chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 2015, 191(9): 1084-1086.
- 38. Bhatt SP, Soler X, Wang X, et al. Association between functional small airway disease and FEV1 decline in chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 2016, 194(2): 178-184.
- 39. Criner RN, Hatt CR, Galbán CJ, et al. Relationship between diffusion capacity and small airway abnormality in COPDGene. Respir Res, 2019, 20(1): 269.
- 40. Young AL, Bragman FJS, Rangelov B, et al. Disease progression modeling in chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 2020, 201(3): 294-302.
- 41. Tanabe N, Shimizu K, Terada K, et al. Central airway and peripheral lung structures in airway disease-dominant COPD. ERJ Open Res, 2021, 7(1): 00672-2020.
- 42. Labaki WW, Gu T, Murray S, et al. Voxel-wise longitudinal parametric response mapping analysis of chest computed tomography in smokers. Acad Radiol, 2019, 26(2): 217-223.
- 43. Saruya S, Yamashiro T, Matsuoka S, et al. Decrease in small pulmonary vessels on chest computed tomography in light smokers without copd: an early change, but correlated with smoking index. Lung, 2017, 195(2): 179-184.
- 44. Synn AJ, Li W, San José Estépar R, et al. Pulmonary vascular pruning on computed tomography and risk of death in the Framingham Heart Study. Am J Respir Crit Care Med, 2021, 203(2): 251-254.
- 45. Wang J, Li MJ, Chang C. Quantitative computed tomography measurement of cross-sectional area of small pulmonary vessels in asthmatic patients. Chin Med J(Engl), 2019, 132(16): 1903-1908.
- 46. Yang T, Chen C, Chen Z. The CT pulmonary vascular parameters and disease severity in COPD patients on acute exacerbation: a correlation analysis. BMC Pulm Med, 2021, 21(1): 34.
- 47. Synn AJ, Li W, San José Estépar R, et al. Radiographic pulmonary vessel volume, lung function and airways disease in the Framingham Heart Study. Eur Respir J, 2019, 54(3): 1900408.
- 48. Cho YH, Lee SM, Seo JB, et al. Quantitative assessment of pulmonary vascular alterations in chronic obstructive lung disease: Associations with pulmonary function test and survival in the KOLD cohort. Eur J Radiol, 2018, 108: 276-282.
-
Previous Article
肺结核在慢性阻塞性肺疾病发生发展中的作用研究进展 -
Next Article
白细胞介素-1 家族新成员 IL-36 和 IL-38 在哮喘作用机制中的研究进展