Citation: 徐宇治, 孙立群. 1-磷酸鞘氨醇在脓毒症诊疗中的应用前景. Chinese Journal of Respiratory and Critical Care Medicine, 2022, 21(5): 370-373. doi: 10.7507/1671-6205.202202017 Copy
Copyright © the editorial department of Chinese Journal of Respiratory and Critical Care Medicine of West China Medical Publisher. All rights reserved
1. | Cecconi M, Evans L, Levy M, et al. Sepsis and septic shock. Lancet, 2018, 392(10141): 75-87. |
2. | Rudd KE, Johnson SC, Agesa KM, et al. Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for the Global Burden of Disease Study. Lancet, 2020, 395(10219): 200-211. |
3. | Esposito S, De Simone G, Boccia G, et al. Sepsis and septic shock: New definitions, new diagnostic and therapeutic approaches. J Glob Antimicrob Resist, 2017, 10: 204-212. |
4. | Opal SM, Wittebole X. Biomarkers of infection and sepsis. Crit Care Clin, 2020, 36(1): 11-22. |
5. | Kurano M, Tsukamoto K, Shimizu T, et al. Protection against insulin resistance by apolipoprotein M/sphingosine-1-phosphate. Diabetes, 2020, 69(5): 867-881. |
6. | 李建, 李文哲, 王鑫, 等. 血清 1-磷酸鞘氨醇水平动态变化对脓毒性休克短期预后的预测价值. 标记免疫分析与临床, 2020, 27(5): 794-798. |
7. | Winkler MS, Nierhaus A, Holzmann M, et al. Decreased serum concentrations of sphingosine-1-phosphate in sepsis. Crit Care, 2015, 19: 372. |
8. | Evans L, Rhodes A, Alhazzani W, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021. Intensive Care Med, 2021, 47(11): 1181-1247. |
9. | Fan YW, Chen JM, Liu D, et al. HDL-S1P protects endothelial function and reduces lung injury during sepsis in vivo and in vitro. Int J Biochem Cell Biol, 2020, 126: 105819. |
10. | Ziegler AC, Müller T, Gräler MH. Sphingosine 1-phosphate in sepsis and beyond: Its role in disease tolerance and host defense and the impact of carrier molecules. Cell Signal, 2021, 78: 109849. |
11. | Jozefczuk E, Guzik TJ, Siedlinski M. Significance of sphingosine-1-phosphate in cardiovascular physiology and pathology. Pharmacol Res, 2020, 156: 104793. |
12. | Książek M, Chacińska M, Chabowski A, et al. Sources, metabolism, and regulation of circulating sphingosine-1-phosphate. J Lipid Res, 2015, 56(7): 1271-1281. |
13. | Obinata H, Hla T. Sphingosine 1-phosphate and inflammation. Int Immunol, 2019, 31(9): 617-625. |
14. | Baeyens AAL, Schwab SR. Finding a way out: S1P signaling and immune cell migration. Annu Rev Immunol, 2020, 38: 759-784. |
15. | Wang X, Wang F. Vascular protection by high-density lipoprotein-associated sphingosine-1-phosphate. J Geriatr Cardiol, 2017, 14(11): 696-702. |
16. | Kimura T, Sato K, Kuwabara A, et al. Sphingosine 1-phosphate may be a major component of plasma lipoproteins responsible for the cytoprotective actions in human umbilical vein endothelial cells. J Biol Chem, 2001, 276(34): 31780-31785. |
17. | Dennhardt S, Finke KR, Huwiler A, et al. Sphingosine-1-phosphate promotes barrier-stabilizing effects in human microvascular endothelial cells via AMPK-dependent mechanisms. Biochim Biophys Acta Mol Basis Dis, 2019, 1865(4): 774-781. |
18. | Burg N, Swendeman S, Worgall S, et al. Sphingosine 1-phosphate receptor 1 signaling maintains endothelial cell barrier function and protects against immune complex-induced vascular injury. Arthritis Rheumatol, 2018, 70(11): 1879-1889. |
19. | Song F, Hou JC, Chen ZC, et al. Sphingosine-1-phosphate receptor 2 signaling promotes caspase-11-dependent macrophage pyroptosis and worsens escherichia coli sepsis outcome. Anesthesiology, 2018, 129(2): 311-320. |
20. | Hou JC, Chen QX, Wu XL, et al. S1PR3 signaling drives bacterial killing and is required for survival in bacterial sepsis. Am J Respir Crit Care Med, 2017, 196(12): 1559-1570. |
21. | Bryan AM, Del Poeta M. Sphingosine-1-phosphate receptors and innate immunity. Cell Microbiol, 2018, 20(5): e12836. |
22. | Martín-Fernández M, Tamayo-Velasco Á, Aller R, et al. Endothelial dysfunction and neutrophil degranulation as central events in sepsis physiopathology. Int J Mol Sci, 2021, 22(12): 6272. |
23. | 王颖勤, 钟鸣, 诸杜明. 鞘氨醇-1-磷酸在脓毒症中调节作用的研究进展. 中国临床医学, 2018, 25(6): 977-982. |
24. | Ince C, Mayeux PR, Nguyen T, et al. The endothelium in sepsis. Shock, 2016, 45(3): 259-270. |
25. | Xiong YQ, Hla T. S1P control of endothelial integrity. Curr Top Microbiol Immunol, 2014, 378: 85-105. |
26. | Dudek SM, Jacobson JR, Chiang ET, et al. Pulmonary endothelial cell barrier enhancement by sphingosine 1-phosphate: roles for cortactin and myosin light chain kinase. J Biol Chem, 2004, 279(23): 24692-24700. |
27. | 范怡雯. 探究高密度脂蛋白相关 1—磷酸鞘氨醇在脓毒症中对肺血管内皮功能的作用及其机制 [D]. 上海交通大学, 2020. |
28. | Cao CC, Dai L, Mu JY, et al. S1PR2 antagonist alleviates oxidative stress-enhanced brain endothelial permeability by attenuating p38 and Erk1/2-dependent cPLA2 phosphorylation. Cell Signal, 2019, 53: 151-161. |
29. | Iba T, Umemura Y, Wada H, et al. Roles of coagulation abnormalities and microthrombosis in sepsis: pathophysiology, diagnosis, and treatment. Arch Med Res, 2021, 52(8): 788-797. |
30. | Iba T, Levi M, Levy JH. Sepsis-induced coagulopathy and disseminated intravascular coagulation. Semin Thromb Hemost, 2020, 46(1): 89-95. |
31. | Iba T, Levy JH. Derangement of the endothelial glycocalyx in sepsis. J Thromb Haemost, 2019, 17(2): 283-294. |
32. | Zeng Y, Adamson RH, Curry FR, et al. Sphingosine-1-phosphate protects endothelial glycocalyx by inhibiting syndecan-1 shedding. Am J Physiol Heart Circ Physiol, 2014, 306(3): H363-H372. |
33. | Uchimido R, Schmidt EP, Shapiro NI. The glycocalyx: a novel diagnostic and therapeutic target in sepsis. Crit Care, 2019, 23(1): 16. |
34. | Kuzmich NN, Sivak KV, Chubarev VN, et al. TLR4 signaling pathway modulators as potential therapeutics in inflammation and sepsis. Vaccines (Basel), 2017, 5(4): 34. |
35. | Zhang HF, Zhang HB, Wu XP, et al. Fisetin alleviates sepsis-induced multiple organ dysfunction in mice via inhibiting p38 MAPK/MK2 signaling. Acta Pharmacol Sin, 2020, 41(10): 1348-1356. |
36. | Winkler MS, Nierhaus A, Poppe A, et al. Sphingosine-1-phosphate: a potential biomarker and therapeutic target for endothelial dysfunction and sepsis?. Shock, 2017, 47(6): 666-672. |
37. | Wang XW, Chen SH, Xiang H, et al. Role of sphingosine-1-phosphate receptors in vascular injury of inflammatory bowel disease. J Cell Mol Med, 2021, 25(6): 2740-2749. |
38. | Hu SP, Pi QZ, Xu XD, et al. Disrupted eNOS activity and expression account for vasodilator dysfunction in different stage of sepsis. Life Sci, 2021, 264: 118606. |
39. | Chousterman BG, Swirski FK, Weber GF. Cytokine storm and sepsis disease pathogenesis. Semin Immunopathol, 2017, 39(5): 517-528. |
40. | Kerage D, Gombos RB, Wang SM, et al. Sphingosine 1-phosphate-induced nitric oxide production simultaneously controls endothelial barrier function and vascular tone in resistance arteries. Vascul Pharmacol, 2021, 140: 106874. |
41. | Wu XL, Hou JC, Li H, et al. Inverse correlation between plasma sphingosine-1-phosphate and ceramide concentrations in septic patients and their utility in predicting mortality. Shock, 2019, 51(6): 718-724. |
42. | Zhang L, Wang HD. FTY720 in CNS injuries: molecular mechanisms and therapeutic potential. Brain Res Bull, 2020, 164: 75-82. |
43. | Kuai F, Wang L, Su JH, et al. Exploring the protective role and the mechanism of sphingosine 1 phosphate in endotoxic cardiomyocytes. Shock, 2019, 52(4): 468-476. |
- 1. Cecconi M, Evans L, Levy M, et al. Sepsis and septic shock. Lancet, 2018, 392(10141): 75-87.
- 2. Rudd KE, Johnson SC, Agesa KM, et al. Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for the Global Burden of Disease Study. Lancet, 2020, 395(10219): 200-211.
- 3. Esposito S, De Simone G, Boccia G, et al. Sepsis and septic shock: New definitions, new diagnostic and therapeutic approaches. J Glob Antimicrob Resist, 2017, 10: 204-212.
- 4. Opal SM, Wittebole X. Biomarkers of infection and sepsis. Crit Care Clin, 2020, 36(1): 11-22.
- 5. Kurano M, Tsukamoto K, Shimizu T, et al. Protection against insulin resistance by apolipoprotein M/sphingosine-1-phosphate. Diabetes, 2020, 69(5): 867-881.
- 6. 李建, 李文哲, 王鑫, 等. 血清 1-磷酸鞘氨醇水平动态变化对脓毒性休克短期预后的预测价值. 标记免疫分析与临床, 2020, 27(5): 794-798.
- 7. Winkler MS, Nierhaus A, Holzmann M, et al. Decreased serum concentrations of sphingosine-1-phosphate in sepsis. Crit Care, 2015, 19: 372.
- 8. Evans L, Rhodes A, Alhazzani W, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021. Intensive Care Med, 2021, 47(11): 1181-1247.
- 9. Fan YW, Chen JM, Liu D, et al. HDL-S1P protects endothelial function and reduces lung injury during sepsis in vivo and in vitro. Int J Biochem Cell Biol, 2020, 126: 105819.
- 10. Ziegler AC, Müller T, Gräler MH. Sphingosine 1-phosphate in sepsis and beyond: Its role in disease tolerance and host defense and the impact of carrier molecules. Cell Signal, 2021, 78: 109849.
- 11. Jozefczuk E, Guzik TJ, Siedlinski M. Significance of sphingosine-1-phosphate in cardiovascular physiology and pathology. Pharmacol Res, 2020, 156: 104793.
- 12. Książek M, Chacińska M, Chabowski A, et al. Sources, metabolism, and regulation of circulating sphingosine-1-phosphate. J Lipid Res, 2015, 56(7): 1271-1281.
- 13. Obinata H, Hla T. Sphingosine 1-phosphate and inflammation. Int Immunol, 2019, 31(9): 617-625.
- 14. Baeyens AAL, Schwab SR. Finding a way out: S1P signaling and immune cell migration. Annu Rev Immunol, 2020, 38: 759-784.
- 15. Wang X, Wang F. Vascular protection by high-density lipoprotein-associated sphingosine-1-phosphate. J Geriatr Cardiol, 2017, 14(11): 696-702.
- 16. Kimura T, Sato K, Kuwabara A, et al. Sphingosine 1-phosphate may be a major component of plasma lipoproteins responsible for the cytoprotective actions in human umbilical vein endothelial cells. J Biol Chem, 2001, 276(34): 31780-31785.
- 17. Dennhardt S, Finke KR, Huwiler A, et al. Sphingosine-1-phosphate promotes barrier-stabilizing effects in human microvascular endothelial cells via AMPK-dependent mechanisms. Biochim Biophys Acta Mol Basis Dis, 2019, 1865(4): 774-781.
- 18. Burg N, Swendeman S, Worgall S, et al. Sphingosine 1-phosphate receptor 1 signaling maintains endothelial cell barrier function and protects against immune complex-induced vascular injury. Arthritis Rheumatol, 2018, 70(11): 1879-1889.
- 19. Song F, Hou JC, Chen ZC, et al. Sphingosine-1-phosphate receptor 2 signaling promotes caspase-11-dependent macrophage pyroptosis and worsens escherichia coli sepsis outcome. Anesthesiology, 2018, 129(2): 311-320.
- 20. Hou JC, Chen QX, Wu XL, et al. S1PR3 signaling drives bacterial killing and is required for survival in bacterial sepsis. Am J Respir Crit Care Med, 2017, 196(12): 1559-1570.
- 21. Bryan AM, Del Poeta M. Sphingosine-1-phosphate receptors and innate immunity. Cell Microbiol, 2018, 20(5): e12836.
- 22. Martín-Fernández M, Tamayo-Velasco Á, Aller R, et al. Endothelial dysfunction and neutrophil degranulation as central events in sepsis physiopathology. Int J Mol Sci, 2021, 22(12): 6272.
- 23. 王颖勤, 钟鸣, 诸杜明. 鞘氨醇-1-磷酸在脓毒症中调节作用的研究进展. 中国临床医学, 2018, 25(6): 977-982.
- 24. Ince C, Mayeux PR, Nguyen T, et al. The endothelium in sepsis. Shock, 2016, 45(3): 259-270.
- 25. Xiong YQ, Hla T. S1P control of endothelial integrity. Curr Top Microbiol Immunol, 2014, 378: 85-105.
- 26. Dudek SM, Jacobson JR, Chiang ET, et al. Pulmonary endothelial cell barrier enhancement by sphingosine 1-phosphate: roles for cortactin and myosin light chain kinase. J Biol Chem, 2004, 279(23): 24692-24700.
- 27. 范怡雯. 探究高密度脂蛋白相关 1—磷酸鞘氨醇在脓毒症中对肺血管内皮功能的作用及其机制 [D]. 上海交通大学, 2020.
- 28. Cao CC, Dai L, Mu JY, et al. S1PR2 antagonist alleviates oxidative stress-enhanced brain endothelial permeability by attenuating p38 and Erk1/2-dependent cPLA2 phosphorylation. Cell Signal, 2019, 53: 151-161.
- 29. Iba T, Umemura Y, Wada H, et al. Roles of coagulation abnormalities and microthrombosis in sepsis: pathophysiology, diagnosis, and treatment. Arch Med Res, 2021, 52(8): 788-797.
- 30. Iba T, Levi M, Levy JH. Sepsis-induced coagulopathy and disseminated intravascular coagulation. Semin Thromb Hemost, 2020, 46(1): 89-95.
- 31. Iba T, Levy JH. Derangement of the endothelial glycocalyx in sepsis. J Thromb Haemost, 2019, 17(2): 283-294.
- 32. Zeng Y, Adamson RH, Curry FR, et al. Sphingosine-1-phosphate protects endothelial glycocalyx by inhibiting syndecan-1 shedding. Am J Physiol Heart Circ Physiol, 2014, 306(3): H363-H372.
- 33. Uchimido R, Schmidt EP, Shapiro NI. The glycocalyx: a novel diagnostic and therapeutic target in sepsis. Crit Care, 2019, 23(1): 16.
- 34. Kuzmich NN, Sivak KV, Chubarev VN, et al. TLR4 signaling pathway modulators as potential therapeutics in inflammation and sepsis. Vaccines (Basel), 2017, 5(4): 34.
- 35. Zhang HF, Zhang HB, Wu XP, et al. Fisetin alleviates sepsis-induced multiple organ dysfunction in mice via inhibiting p38 MAPK/MK2 signaling. Acta Pharmacol Sin, 2020, 41(10): 1348-1356.
- 36. Winkler MS, Nierhaus A, Poppe A, et al. Sphingosine-1-phosphate: a potential biomarker and therapeutic target for endothelial dysfunction and sepsis?. Shock, 2017, 47(6): 666-672.
- 37. Wang XW, Chen SH, Xiang H, et al. Role of sphingosine-1-phosphate receptors in vascular injury of inflammatory bowel disease. J Cell Mol Med, 2021, 25(6): 2740-2749.
- 38. Hu SP, Pi QZ, Xu XD, et al. Disrupted eNOS activity and expression account for vasodilator dysfunction in different stage of sepsis. Life Sci, 2021, 264: 118606.
- 39. Chousterman BG, Swirski FK, Weber GF. Cytokine storm and sepsis disease pathogenesis. Semin Immunopathol, 2017, 39(5): 517-528.
- 40. Kerage D, Gombos RB, Wang SM, et al. Sphingosine 1-phosphate-induced nitric oxide production simultaneously controls endothelial barrier function and vascular tone in resistance arteries. Vascul Pharmacol, 2021, 140: 106874.
- 41. Wu XL, Hou JC, Li H, et al. Inverse correlation between plasma sphingosine-1-phosphate and ceramide concentrations in septic patients and their utility in predicting mortality. Shock, 2019, 51(6): 718-724.
- 42. Zhang L, Wang HD. FTY720 in CNS injuries: molecular mechanisms and therapeutic potential. Brain Res Bull, 2020, 164: 75-82.
- 43. Kuai F, Wang L, Su JH, et al. Exploring the protective role and the mechanism of sphingosine 1 phosphate in endotoxic cardiomyocytes. Shock, 2019, 52(4): 468-476.
-
Previous Article
慢性阻塞性肺疾病肺气肿表型影像学特征与发生机制研究进展 -
Next Article
溶瘤病毒在肺癌治疗中的研究进展