Citation: 沈煜斌, 欧茜文, 刘松. 阻塞性睡眠呼吸暂停对脑代谢功能的影响. Chinese Journal of Respiratory and Critical Care Medicine, 2024, 23(2): 132-137. doi: 10.7507/1671-6205.202307045 Copy
Copyright © the editorial department of Chinese Journal of Respiratory and Critical Care Medicine of West China Medical Publisher. All rights reserved
1. | Zolotoff C, Bertoletti L, Gozal D, et al. Obstructive sleep apnea, hypercoagulability, and the blood-brain barrier. J Clin Med, 2021, 10(14): 3099. |
2. | Wang H, Wang X, Shen Y, et al. SENP1 modulates chronic intermittent hypoxia-induced inflammation of microglia and neuronal injury by inhibiting TOM1 pathway. Int Immunopharmacol, 2023, 119: 110230. |
3. | Yang XY, An JR, Dong Q, et al. Banxia-Houpu decoction inhibits iron overload and chronic intermittent hypoxia-induced neuroinflammation in mice. J Ethnopharmacol, 2024, 318(Pt B): 117078. |
4. | Kiernan EA, Wang T, Vanderplow AM, et al. Neonatal intermittent hypoxia induces lasting sex-specific augmentation of rat microglial cytokine expression. Front Immunol, 2019, 10: 1479. |
5. | Wu X, Gong L, Xie L, et al. NLRP3 deficiency protects against intermittent hypoxia-induced neuroinflammation and mitochondrial ROS by promoting the PINK1-parkin pathway of mitophagy in a murine model of sleep apnea. Front Immunol, 2021, 12: 628168. |
6. | Wang B, Li W, Jin H, et al. Curcumin attenuates chronic intermittent hypoxia-induced brain injuries by inhibiting AQP4 and p38 MAPK pathway. Respir Physiol Neurobiol, 2018, 255: 50-57. |
7. | She N, Shi Y, Feng Y, et al. NLRP3 inflammasome regulates astrocyte transformation in brain injury induced by chronic intermittent hypoxia. BMC Neurosci, 2022, 23(1): 70. |
8. | Macheda T, Roberts K, Lyons DN, et al. Chronic intermittent hypoxia induces robust astrogliosis in an Alzheimer's disease-relevant mouse model. Neuroscience, 2019, 398: 55-63. |
9. | 卢亚凤, 殷梅, 容伟. 线粒体自噬对阻塞性睡眠呼吸暂停综合征大鼠海马神经元的影响. 医学信息, 2020, 33(11): 72-75. |
10. | 汪鑫, 刘智俐, 黄尹裴, 等. TGF-β1对间歇性缺氧诱导海马神经元自噬的影响. 第三军医大学学报, 2021, 43(14): 1312-1318. |
11. | 刘仁帅, 罗悯, 殷梅. 慢性间歇性缺氧致认知功能障碍与小胶质细胞相关性的研究进展. 神经疾病与精神卫生, 2021, 21(10): 751-755. |
12. | Kiernan EA, Smith SM, Mitchell GS, et al. Mechanisms of microglial activation in models of inflammation and hypoxia: Implications for chronic intermittent hypoxia. J Physiol, 2016, 594(6): 1563-1577. |
13. | Bonilla-Jaime H, Zeleke H, Rojas A, et al. Sleep Disruption worsens seizures: neuroinflammation as a potential mechanistic link. Int J Mol Sci, 2021, 22(22): 12531. |
14. | Amanollahi M, Jameie M, Heidari A, et al. The dialogue between neuroinflammation and adult neurogenesis: mechanisms involved and alterations in neurological diseases. Mol Neurobiol, 2023, 60(2): 923-959. |
15. | Ingiosi AM, Opp MR, Krueger JM. Sleep and immune function: glial contributions and consequences of aging. Curr Opin Neurobiol, 2013, 23(5): 806-811. |
16. | Mishra I, Pullum KB, Eads KN, et al. Peripheral sympathectomy alters neuroinflammatory and microglial responses to sleep fragmentation in female mice. Neuroscience, 2022, 505: 111-124. |
17. | Chen HL, Lin HC, Lu CH, et al. Systemic inflammation and alterations to cerebral blood flow in obstructive sleep apnea. J Sleep Res, 2017, 26(6): 789-798. |
18. | Zhang Z, Qi M, Hugli G, et al. Predictors of changes in cerebral perfusion and oxygenation during obstructive sleep apnea. Sci Rep, 2021, 11(1): 23510. |
19. | L'Heureux F, Baril AA, Gagnon K, et al. Longitudinal changes in regional cerebral blood flow in late middle-aged and older adults with treated and untreated obstructive sleep apnea. Hum Brain Mapp, 2021, 42(11): 3429-3439. |
20. | Baril AA, Gagnon K, Arbour C, et al. Regional cerebral blood flow during wakeful rest in older subjects with mild to severe obstructive sleep apnea. Sleep, 2015, 38(9): 1439-1449. |
21. | Daulatzai MA. Cerebral hypoperfusion and glucose hypometabolism: key pathophysiological modulators promote neurodegeneration, cognitive impairment, and Alzheimer's disease. J Neurosci Res, 2017, 95(4): 943-972. |
22. | Ryan CM, Battisti-Charbonney A, Sobczyk O, et al. Evaluation of cerebrovascular reactivity in subjects with and without obstructive sleep apnea. J Stroke Cerebrovasc Dis, 2018, 27(1): 162-168. |
23. | Yan L, Park HR, Kezirian EJ, et al. Altered regional cerebral blood flow in obstructive sleep apnea is associated with sleep fragmentation and oxygen desaturation. J Cereb Blood Flow Metab, 2021, 41(10): 2712-2724. |
24. | Foster GE, Hanly PJ, Ostrowski M, e tal. Effects of continuous positive airway pressure on cerebral vascular response to hypoxia in patients with obstructive sleep apnea. Am J Respir Crit Care Med, 2007, 175(7): 720-725. |
25. | Kilicarslan R, Alkan A, Sharifov R, et al. The effect of obesity on brain diffusion alteration in patients with obstructive sleep apnea. ScientificWorldJournal, 2014, 2014: 768415. |
26. | Voirin AC, Celle S, Perek N, et al. Sera of elderly obstructive sleep apnea patients alter blood-brain barrier integrity in vitro: a pilot study. Sci Rep, 2020, 10(1): 11309. |
27. | Lim DC, Pack AI. Obstructive sleep apnea and cognitive impairment: addressing the blood-brain barrier. Sleep Med Rev, 2014, 18(1): 35-48. |
28. | Halder SK, Milner R. Mild hypoxia triggers transient blood-brain barrier disruption: a fundamental protective role for microglia. Acta Neuropathol Commun, 2020, 8(1): 175. |
29. | Khalyfa A, Gozal D, Kheirandish-Gozal L. Plasma extracellular vesicles in children with OSA disrupt blood-brain barrier integrity and endothelial cell wound healing in vitro. Int J Mol Sci, 2019, 20(24): 6233. |
30. | Khalyfa A, Gozal D, Kheirandish-Gozal L. Plasma exosomes disrupt the blood-brain barrier in children with obstructive sleep apnea and neurocognitive deficits. Am J Respir Crit Care Med, 2018, 197(8): 1073-1076. |
31. | Xia Y, Fu Y, Xu H, et al. Changes in cerebral metabolites in obstructive sleep apnea: a systemic review and meta-analysis. Sci Rep, 2016, 6: 28712. |
32. | Sarma MK, Nagarajan R, Macey PM, et al. Accelerated echo-planar J-resolved spectroscopic imaging in the human brain using compressed sensing: a pilot validation in obstructive sleep apnea. AJNR Am J Neuroradiol, 2014, 35(6 Suppl): S81-S89. |
33. | Macey PM, Sarma MK, Nagarajan R, et al. Obstructive sleep apnea is associated with low GABA and high glutamate in the insular cortex. J Sleep Res, 2016, 25(4): 390-394. |
34. | Sarma MK, Macey PM, Nagarajan R, et al. Accelerated echo planer J-resolved spectroscopic imaging of putamen and thalamus in obstructive sleep apnea. Sci Rep, 2016, 6: 31747. |
35. | Bubu OM, Pirraglia E, Andrade AG, et al. Obstructive sleep apnea and longitudinal Alzheimer's disease biomarker changes. Sleep, 2019, 42(6): zsz048. |
36. | Kang J, Tian Z, Wei J, et al. Association between obstructive sleep apnea and Alzheimer's disease-related blood and cerebrospinal fluid biomarkers: a meta-analysis. J Clin Neurosci, 2022, 102: 87-94. |
37. | Alexander C, Li T, Hattori Y, et al. Hypoxia Inducible Factor-1α binds and activates γ-secretase for Aβ production under hypoxia and cerebral hypoperfusion. Mol Psychiatry, 2022, 27(10): 4264-4273. |
38. | Vidal C, Zhang L. An analysis of the neurological and molecular alterations underlying the pathogenesis of Alzheimer's disease. Cells, 2021, 10(3): 546. |
39. | Bhuniya S, Goyal M, Chowdhury N, et al. Intermittent hypoxia and sleep disruption in obstructive sleep apnea increase serum tau and amyloid-beta levels. J Sleep Res, 2022, 31(5): e13566. |
40. | Sun H, Gao Y, Li M, et al. Altered amyloid-beta and tau proteins in neural-derived plasma exosomes in obstructive sleep apnea. Sleep Med, 2022, 94: 76-83. |
41. | Wostyn P, Van Dam D, Audenaert K, et al. Do repetitive Valsalva maneuvers reduce glymphatic clearance? Ann Neurol, 2017, 81(2): 322. |
42. | Ju YS, Zangrilli MA, Finn MB, et al. Obstructive sleep apnea treatment, slow wave activity, and amyloid-beta. Ann Neurol, 2019, 85(2): 291-295. |
43. | Díaz-Román M, Pulopulos MM, et al. Obstructive sleep apnea and Alzheimer's disease-related cerebrospinal fluid biomarkers in mild cognitive impairment. Sleep, 2021, 44(1): zsaa133. |
44. | Bu XL, Liu YH, Wang QH, et al. Serum amyloid-beta levels are increased in patients with obstructive sleep apnea syndrome. Sci Rep, 2015, 5: 13917. |
45. | Przybylska-Kuć S, Zakrzewski M, Dybała A, et al. Obstructive sleep apnea may increase the risk of Alzheimer's disease. PLoS One, 2019, 14(9): e0221255. |
46. | Shiota S, Takekawa H, Matsumoto SE, et al. Chronic intermittent hypoxia/reoxygenation facilitate amyloid-beta generation in mice. J Alzheimers Dis, 2013, 37(2): 325-333. |
47. | Shokri-Kojori E, Wang GJ, Wiers CE, et al. beta-Amyloid accumulation in the human brain after one night of sleep deprivation. Proc Natl Acad Sci U S A, 2018, 115(17): 4483-4488. |
48. | Fernandes M, Mari L, Chiaravalloti A, et al. (18)F-FDG PET, cognitive functioning, and CSF biomarkers in patients with obstructive sleep apnoea before and after continuous positive airway pressure treatment. J Neurol, 2022, 269(10): 5356-5367. |
49. | Long JM, Coble DW, Xiong C, et al. Preclinical Alzheimer's disease biomarkers accurately predict cognitive and neuropathological outcomes. Brain, 2022, 145(12): 4506-4518. |
50. | Javaheri S, Gottlieb DJ, Quan SF. Effects of continuous positive airway pressure on blood pressure in obstructive sleep apnea patients: The Apnea Positive Pressure Long-term Efficacy Study (APPLES). J Sleep Res, 2020, 29(2): e12943. |
- 1. Zolotoff C, Bertoletti L, Gozal D, et al. Obstructive sleep apnea, hypercoagulability, and the blood-brain barrier. J Clin Med, 2021, 10(14): 3099.
- 2. Wang H, Wang X, Shen Y, et al. SENP1 modulates chronic intermittent hypoxia-induced inflammation of microglia and neuronal injury by inhibiting TOM1 pathway. Int Immunopharmacol, 2023, 119: 110230.
- 3. Yang XY, An JR, Dong Q, et al. Banxia-Houpu decoction inhibits iron overload and chronic intermittent hypoxia-induced neuroinflammation in mice. J Ethnopharmacol, 2024, 318(Pt B): 117078.
- 4. Kiernan EA, Wang T, Vanderplow AM, et al. Neonatal intermittent hypoxia induces lasting sex-specific augmentation of rat microglial cytokine expression. Front Immunol, 2019, 10: 1479.
- 5. Wu X, Gong L, Xie L, et al. NLRP3 deficiency protects against intermittent hypoxia-induced neuroinflammation and mitochondrial ROS by promoting the PINK1-parkin pathway of mitophagy in a murine model of sleep apnea. Front Immunol, 2021, 12: 628168.
- 6. Wang B, Li W, Jin H, et al. Curcumin attenuates chronic intermittent hypoxia-induced brain injuries by inhibiting AQP4 and p38 MAPK pathway. Respir Physiol Neurobiol, 2018, 255: 50-57.
- 7. She N, Shi Y, Feng Y, et al. NLRP3 inflammasome regulates astrocyte transformation in brain injury induced by chronic intermittent hypoxia. BMC Neurosci, 2022, 23(1): 70.
- 8. Macheda T, Roberts K, Lyons DN, et al. Chronic intermittent hypoxia induces robust astrogliosis in an Alzheimer's disease-relevant mouse model. Neuroscience, 2019, 398: 55-63.
- 9. 卢亚凤, 殷梅, 容伟. 线粒体自噬对阻塞性睡眠呼吸暂停综合征大鼠海马神经元的影响. 医学信息, 2020, 33(11): 72-75.
- 10. 汪鑫, 刘智俐, 黄尹裴, 等. TGF-β1对间歇性缺氧诱导海马神经元自噬的影响. 第三军医大学学报, 2021, 43(14): 1312-1318.
- 11. 刘仁帅, 罗悯, 殷梅. 慢性间歇性缺氧致认知功能障碍与小胶质细胞相关性的研究进展. 神经疾病与精神卫生, 2021, 21(10): 751-755.
- 12. Kiernan EA, Smith SM, Mitchell GS, et al. Mechanisms of microglial activation in models of inflammation and hypoxia: Implications for chronic intermittent hypoxia. J Physiol, 2016, 594(6): 1563-1577.
- 13. Bonilla-Jaime H, Zeleke H, Rojas A, et al. Sleep Disruption worsens seizures: neuroinflammation as a potential mechanistic link. Int J Mol Sci, 2021, 22(22): 12531.
- 14. Amanollahi M, Jameie M, Heidari A, et al. The dialogue between neuroinflammation and adult neurogenesis: mechanisms involved and alterations in neurological diseases. Mol Neurobiol, 2023, 60(2): 923-959.
- 15. Ingiosi AM, Opp MR, Krueger JM. Sleep and immune function: glial contributions and consequences of aging. Curr Opin Neurobiol, 2013, 23(5): 806-811.
- 16. Mishra I, Pullum KB, Eads KN, et al. Peripheral sympathectomy alters neuroinflammatory and microglial responses to sleep fragmentation in female mice. Neuroscience, 2022, 505: 111-124.
- 17. Chen HL, Lin HC, Lu CH, et al. Systemic inflammation and alterations to cerebral blood flow in obstructive sleep apnea. J Sleep Res, 2017, 26(6): 789-798.
- 18. Zhang Z, Qi M, Hugli G, et al. Predictors of changes in cerebral perfusion and oxygenation during obstructive sleep apnea. Sci Rep, 2021, 11(1): 23510.
- 19. L'Heureux F, Baril AA, Gagnon K, et al. Longitudinal changes in regional cerebral blood flow in late middle-aged and older adults with treated and untreated obstructive sleep apnea. Hum Brain Mapp, 2021, 42(11): 3429-3439.
- 20. Baril AA, Gagnon K, Arbour C, et al. Regional cerebral blood flow during wakeful rest in older subjects with mild to severe obstructive sleep apnea. Sleep, 2015, 38(9): 1439-1449.
- 21. Daulatzai MA. Cerebral hypoperfusion and glucose hypometabolism: key pathophysiological modulators promote neurodegeneration, cognitive impairment, and Alzheimer's disease. J Neurosci Res, 2017, 95(4): 943-972.
- 22. Ryan CM, Battisti-Charbonney A, Sobczyk O, et al. Evaluation of cerebrovascular reactivity in subjects with and without obstructive sleep apnea. J Stroke Cerebrovasc Dis, 2018, 27(1): 162-168.
- 23. Yan L, Park HR, Kezirian EJ, et al. Altered regional cerebral blood flow in obstructive sleep apnea is associated with sleep fragmentation and oxygen desaturation. J Cereb Blood Flow Metab, 2021, 41(10): 2712-2724.
- 24. Foster GE, Hanly PJ, Ostrowski M, e tal. Effects of continuous positive airway pressure on cerebral vascular response to hypoxia in patients with obstructive sleep apnea. Am J Respir Crit Care Med, 2007, 175(7): 720-725.
- 25. Kilicarslan R, Alkan A, Sharifov R, et al. The effect of obesity on brain diffusion alteration in patients with obstructive sleep apnea. ScientificWorldJournal, 2014, 2014: 768415.
- 26. Voirin AC, Celle S, Perek N, et al. Sera of elderly obstructive sleep apnea patients alter blood-brain barrier integrity in vitro: a pilot study. Sci Rep, 2020, 10(1): 11309.
- 27. Lim DC, Pack AI. Obstructive sleep apnea and cognitive impairment: addressing the blood-brain barrier. Sleep Med Rev, 2014, 18(1): 35-48.
- 28. Halder SK, Milner R. Mild hypoxia triggers transient blood-brain barrier disruption: a fundamental protective role for microglia. Acta Neuropathol Commun, 2020, 8(1): 175.
- 29. Khalyfa A, Gozal D, Kheirandish-Gozal L. Plasma extracellular vesicles in children with OSA disrupt blood-brain barrier integrity and endothelial cell wound healing in vitro. Int J Mol Sci, 2019, 20(24): 6233.
- 30. Khalyfa A, Gozal D, Kheirandish-Gozal L. Plasma exosomes disrupt the blood-brain barrier in children with obstructive sleep apnea and neurocognitive deficits. Am J Respir Crit Care Med, 2018, 197(8): 1073-1076.
- 31. Xia Y, Fu Y, Xu H, et al. Changes in cerebral metabolites in obstructive sleep apnea: a systemic review and meta-analysis. Sci Rep, 2016, 6: 28712.
- 32. Sarma MK, Nagarajan R, Macey PM, et al. Accelerated echo-planar J-resolved spectroscopic imaging in the human brain using compressed sensing: a pilot validation in obstructive sleep apnea. AJNR Am J Neuroradiol, 2014, 35(6 Suppl): S81-S89.
- 33. Macey PM, Sarma MK, Nagarajan R, et al. Obstructive sleep apnea is associated with low GABA and high glutamate in the insular cortex. J Sleep Res, 2016, 25(4): 390-394.
- 34. Sarma MK, Macey PM, Nagarajan R, et al. Accelerated echo planer J-resolved spectroscopic imaging of putamen and thalamus in obstructive sleep apnea. Sci Rep, 2016, 6: 31747.
- 35. Bubu OM, Pirraglia E, Andrade AG, et al. Obstructive sleep apnea and longitudinal Alzheimer's disease biomarker changes. Sleep, 2019, 42(6): zsz048.
- 36. Kang J, Tian Z, Wei J, et al. Association between obstructive sleep apnea and Alzheimer's disease-related blood and cerebrospinal fluid biomarkers: a meta-analysis. J Clin Neurosci, 2022, 102: 87-94.
- 37. Alexander C, Li T, Hattori Y, et al. Hypoxia Inducible Factor-1α binds and activates γ-secretase for Aβ production under hypoxia and cerebral hypoperfusion. Mol Psychiatry, 2022, 27(10): 4264-4273.
- 38. Vidal C, Zhang L. An analysis of the neurological and molecular alterations underlying the pathogenesis of Alzheimer's disease. Cells, 2021, 10(3): 546.
- 39. Bhuniya S, Goyal M, Chowdhury N, et al. Intermittent hypoxia and sleep disruption in obstructive sleep apnea increase serum tau and amyloid-beta levels. J Sleep Res, 2022, 31(5): e13566.
- 40. Sun H, Gao Y, Li M, et al. Altered amyloid-beta and tau proteins in neural-derived plasma exosomes in obstructive sleep apnea. Sleep Med, 2022, 94: 76-83.
- 41. Wostyn P, Van Dam D, Audenaert K, et al. Do repetitive Valsalva maneuvers reduce glymphatic clearance? Ann Neurol, 2017, 81(2): 322.
- 42. Ju YS, Zangrilli MA, Finn MB, et al. Obstructive sleep apnea treatment, slow wave activity, and amyloid-beta. Ann Neurol, 2019, 85(2): 291-295.
- 43. Díaz-Román M, Pulopulos MM, et al. Obstructive sleep apnea and Alzheimer's disease-related cerebrospinal fluid biomarkers in mild cognitive impairment. Sleep, 2021, 44(1): zsaa133.
- 44. Bu XL, Liu YH, Wang QH, et al. Serum amyloid-beta levels are increased in patients with obstructive sleep apnea syndrome. Sci Rep, 2015, 5: 13917.
- 45. Przybylska-Kuć S, Zakrzewski M, Dybała A, et al. Obstructive sleep apnea may increase the risk of Alzheimer's disease. PLoS One, 2019, 14(9): e0221255.
- 46. Shiota S, Takekawa H, Matsumoto SE, et al. Chronic intermittent hypoxia/reoxygenation facilitate amyloid-beta generation in mice. J Alzheimers Dis, 2013, 37(2): 325-333.
- 47. Shokri-Kojori E, Wang GJ, Wiers CE, et al. beta-Amyloid accumulation in the human brain after one night of sleep deprivation. Proc Natl Acad Sci U S A, 2018, 115(17): 4483-4488.
- 48. Fernandes M, Mari L, Chiaravalloti A, et al. (18)F-FDG PET, cognitive functioning, and CSF biomarkers in patients with obstructive sleep apnoea before and after continuous positive airway pressure treatment. J Neurol, 2022, 269(10): 5356-5367.
- 49. Long JM, Coble DW, Xiong C, et al. Preclinical Alzheimer's disease biomarkers accurately predict cognitive and neuropathological outcomes. Brain, 2022, 145(12): 4506-4518.
- 50. Javaheri S, Gottlieb DJ, Quan SF. Effects of continuous positive airway pressure on blood pressure in obstructive sleep apnea patients: The Apnea Positive Pressure Long-term Efficacy Study (APPLES). J Sleep Res, 2020, 29(2): e12943.
-
Previous Article
性别差异对哮喘的影响及女性哮喘的研究进展 -
Next Article
VTE抗凝相关大出血风险及相关预测模型研究进展