Citation: 陈雪怡, 张景鸿. 泛凋亡在呼吸系统疾病中的研究进展. Chinese Journal of Respiratory and Critical Care Medicine, 2024, 23(5): 375-380. doi: 10.7507/1671-6205.202309043 Copy
Copyright © the editorial department of Chinese Journal of Respiratory and Critical Care Medicine of West China Medical Publisher. All rights reserved
1. | Yan WT, Yang YD, Hu XM, et al. Do pyroptosis, apoptosis, and necroptosis (PANoptosis) exist in cerebral ischemia? Evidence from cell and rodent studies. Neural Regen Res, 2022, 17(8): 1761-1768. |
2. | Zhu P, Ke ZR, Chen JX, et al. Advances in mechanism and regulation of PANoptosis: Prospects in disease treatment. Front Immunol, 2023, 14: 1120034. |
3. | Sharma A, Ahmad Farouk I, Lal SK. COVID-19: a review on the novel coronavirus disease evolution, transmission, detection, control and prevention. Viruses, 2021, 13(2): 202. |
4. | Malireddi RKS, Tweedell RE, Kanneganti TD. PANoptosis components, regulation, and implications. Aging (Albany NY), 2020, 12(12): 11163-11164. |
5. | Malik A, Kanneganti TD. Inflammasome activation and assembly at a glance. J Cell Sci, 2017, 130(23): 3955-3963. |
6. | Levine AJ. p53, the cellular gatekeeper for growth and division. Cell, 1997, 88(3): 323-331. |
7. | Fan TJ, Han LH, Cong RS, et al. Caspase family proteases and apoptosis. Acta Biochim Biophys Sin (Shanghai), 2005, 37(11): 719-927. |
8. | Kiraz Y, Adan A, Kartal Yandim M, et al. Major apoptotic mechanisms and genes involved in apoptosis. Tumour Biol, 2016, 37(7): 8471-8486. |
9. | Yuan J, Amin P, Ofengeim D. Necroptosis and RIPK1-mediated neuroinflammation in CNS diseases. Nat Rev Neurosci, 2019, 20(1): 19-33. |
10. | Jiang W, Deng Z, Dai X, et al. PANoptosis: a new insight into oral infectious diseases. Front Immunol, 2021, 12: 789610. |
11. | Tsuchiya K, Nakajima S, Hosojima S, et al. Caspase-1 initiates apoptosis in the absence of gasdermin D. Nat Commun, 2019, 10(1): 2091. |
12. | Kang S, Fernandes-Alnemri T, Rogers C, et al. Caspase-8 scaffolding function and MLKL regulate NLRP3 inflammasome activation downstream of TLR3. Nat Commun, 2015, 6: 7515. |
13. | Guo CH, Fu R, Zhou MJ, et al. Pathogenesis of lupus nephritis: RIP3 dependent necroptosis and NLRP3 inflammasome activation. J Autoimmun, 2019, 103: 102286. |
14. | Shi CX, Cao P, Wang YK, et al. PANoptosis: a cell death characterized by pyroptosis, apoptosis, and necroptosis. J Inflamm Res, 2023, 16: 1523-1532. |
15. | Wang Y, Pandian N, Han JH, et al. Single cell analysis of PANoptosome cell death complexes through an expansion microscopy method. Cell Mol Life Sci, 2022, 79(10): 531. |
16. | Zheng M, Karki R, Vogel P, Kanneganti TD. Caspase-6 is a key regulator of innate immunity, inflammasome activation, and host defense. Cell, 2020, 181(3): 674-687. |
17. | Samir P, Malireddi RKS, Kanneganti TD. The PANoptosome: a deadly protein complex driving pyroptosis, apoptosis, and necroptosis (PANoptosis). Front Cell Infect Microbiol, 2020, 10: 238. |
18. | Kuriakose T, Kanneganti TD. ZBP1: innate sensor regulating cell death and inflammation. Trends Immunol, 2018, 39(2): 123-134. |
19. | Kesavardhana S, Malireddi RKS, Burton AR, et al. The Zα2 domain of ZBP1 is a molecular switch regulating influenza-induced PANoptosis and perinatal lethality during development. J Biol Chem, 2020, 295(24): 8325-8330. |
20. | Banoth B, Tuladhar S, Karki R, et al. ZBP1 promotes fungi-induced inflammasome activation and pyroptosis, apoptosis, and necroptosis (PANoptosis). J Biol Chem, 2020, 295(52): 18276-18283. |
21. | Kanneganti TD, Body-Malapel M, Amer A, et al. Critical role for Cryopyrin/Nalp3 in activation of caspase-1 in response to viral infection and double-stranded RNA. J Biol Chem, 2006, 281(48): 36560-36568. |
22. | Zheng M, Kanneganti TD. The regulation of the ZBP1-NLRP3 inflammasome and its implications in pyroptosis, apoptosis, and necroptosis (PANoptosis). Immunol Rev, 2020, 297(1): 26-38. |
23. | Sundaram B, Pandian N, Mall R, et al. NLRP12-PANoptosome activates PANoptosis and pathology in response to heme and PAMPs. Cell, 2023, 186(13): 2783-2801. |
24. | Sharma BR, Karki R, Kanneganti TD. Role of AIM2 inflammasome in inflammatory diseases, cancer and infection. Eur J Immunol, 2019, 49(11): 1998-2011. |
25. | Lee S, Karki R, Wang YQ, et al. AIM2 forms a complex with pyrin and ZBP1 to drive PANoptosis and host defence. Nature, 2021, 597(7876): 415-419. |
26. | Arrázola MS, Court FA. Commentary on "PANoptosis-like cell death in ischemia/reperfusion injury of retinal neurons". Neural Regen Res, 2023, 18(2): 341. |
27. | Wei X, Xie F, Zhou XX, et al. Role of pyroptosis in inflammation and cancer. Cell Mol Immunol, 2022, 19(9): 971-992. |
28. | Zheng M, Williams EP, Malireddi RKS, et al. Impaired NLRP3 inflammasome activation/pyroptosis leads to robust inflammatory cell death via caspase-8/RIPK3 during coronavirus infection. J Biol Chem, 2020, 295(41): 14040-14052. |
29. | Li P, Nijhawan D, Budihardjo I, et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell, 1997, 91(4): 479-489. |
30. | Meyer NJ, Gattinoni L, Calfee CS. Acute respiratory distress syndrome. Lancet, 2021, 398(10300): 622-637. |
31. | Huppert LA, Matthay MA, Ware LB. Pathogenesis of acute respiratory distress syndrome. Semin Respir Crit Care Med, 2019, 40(1): 31-39. |
32. | Messaoud-Nacer Y, Culerier E, Rose S, et al. STING agonist diABZI induces PANoptosis and DNA mediated acute respiratory distress syndrome (ARDS). Cell Death Dis, 2022, 13(3): 269. |
33. | Guan WJ, Ni ZY, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med, 2020, 382(18): 1708-1720. |
34. | Heinen N, Klöhn M, Steinmann E, et al. In vitro lung models and their application to study SARS-CoV-2 pathogenesis and disease. Viruses, 2021, 13(5): 792. |
35. | Puelles VG, Lütgehetmann M, Lindenmeyer MT, et al. Multiorgan and renal tropism of SARS-CoV-2. N Engl J Med, 2020, 383(6): 590-592. |
36. | Xu JC, Xu XY, Jiang LN, et al. SARS-CoV-2 induces transcriptional signatures in human lung epithelial cells that promote lung fibrosis. Respir Res, 2020, 21(1): 182. |
37. | Zhao FXN, Ma QW, Yue Q, et al. SARS-CoV-2 infection and lung regeneration. Clin Microbiol Rev, 2022, 35(2): e0018821. |
38. | Karki R, Sharma BR, Tuladhar S, et al. Synergism of TNF-α and IFN-γ triggers inflammatory cell death, tissue damage, and mortality in SARS-CoV-2 infection and cytokine shock syndromes. Cell, 2021, 184(1): 149-168. |
39. | He WT, Wan H, Hu L, et al. Gasdermin D is an executor of pyroptosis and required for interleukin-1βsecretion. Cell Res, 2015, 25(12): 1285-1298. |
40. | Newton K, Wickliffe KE, Dugger DL, et al. Cleavage of RIPK1 by caspase-8 is crucial for limiting apoptosis and necroptosis. Nature, 2019, 574(7778): 428-431. |
41. | Jose RJ, Manuel A. COVID-19 cytokine storm: the interplay between inflammation and coagulation. Lancet Respir Med, 2020, 8(6): e46-e47. |
42. | Lee JW, Chun W, Lee HJ, et al. The role of macrophages in the development of acute and chronic inflammatory lung diseases. Cells, 2021, 10(4): 897. |
43. | Robb CT, Regan KH, Dorward DA, et al. Key mechanisms governing resolution of lung inflammation. Semin Immunopathol, 2016, 38(4): 425-448. |
44. | Cicco S, Cicco G, Racanelli V, et al. Neutrophil extracellular traps (NETs) and damage-associated molecular patterns (DAMPs): two potential targets for COVID-19 treatment. Mediators Inflamm, 2020, 2020: 7527953. |
45. | Schifanella L, Anderson J, Wieking G, et al. The defenders of the alveolus succumb in COVID-19 pneumonia to SARS-CoV-2 and necroptosis, pyroptosis, and PANoptosis. J Infect Dis, 2023, 227(11): 1245-1254. |
46. | Ruaro B, Salton F, Braga L, et al. The history and mystery of alveolar epithelial type II cells: focus on their physiologic and pathologic role in lung. Int J Mol Sci, 2021, 22(5): 2566. |
47. | Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin, 2021, 71(3): 209-249. |
48. | Ruiz-Cordero R, Devine WP. Targeted therapy and checkpoint immunotherapy in lung cancer. Surg Pathol Clin, 2020, 13(1): 17-33. |
49. | Bade BC, Dela Cruz CS. Lung Cancer 2020: Epidemiology, Etiology, and Prevention. Clin Chest Med, 2020, 41(1): 1-24. |
50. | Gómez-Angelats M, Cidlowski JA. Molecular evidence for the nuclear localization of FADD. Cell Death Differ, 2003, 10(7): 791-797. |
51. | Wei S, Chen Z, Ling X, et al. Comprehensive analysis illustrating the role of PANoptosis-related genes in lung cancer based on bioinformatic algorithms and experiments. Front Pharmacol, 2023, 14: 1115221. |
52. | Hartl D, Tirouvanziam R, Laval J, et al. Innate immunity of the lung: from basic mechanisms to translational medicine. J Innate Immun, 2018, 10(5-6): 487-501. |
53. | Kruger P, Saffarzadeh M, Weber AN, et al. Neutrophils: between host defence, immune modulation, and tissue injury. PLoS Pathog, 2015, 11(3): e1004651. |
54. | Tang AC, Turvey SE, Alves MP, et al. Current concepts: host-pathogen interactions in cystic fibrosis airways disease. Eur Respir Rev, 2014, 23(133): 320-332. |
55. | Regamey N, Tsartsali L, Hilliard TN, et al. Distinct patterns of inflammation in the airway lumen and bronchial mucosa of children with cystic fibrosis. Thorax, 2012, 67(2): 164-170. |
56. | Van Opdenbosch N, Lamkanfi M. Caspases in cell death, inflammation, and disease. Immunity, 2019, 50(6): 1352-1364. |
57. | 赵鹏跃, 姚人骐, 杜晓辉, 等. 泛凋亡在人类疾病中的作用研究进展. 中华医学杂志, 2022, 102(32): 2549-2554. |
58. | Sun X, Yang YP, Meng XN, et al. PANoptosis: mechanisms, biology, and role in disease[J/OL]. Immunol Rev, [2023-10-12]. |
59. | Cui YH, Wang XQ, Lin FY, et al. MiR-29a-3p improves acute lung injury by reducing alveolar epithelial cell PANoptosis. Aging Dis, 2022, 13(3): 899-909. |
60. | Christgen S, Zheng M, Kesavardhana S, et al. Identification of the PANoptosome: a molecular platform triggering pyroptosis, apoptosis, and necroptosis (PANoptosis). Front Cell Infect Microbiol, 2020, 10: 237. |
61. | Karki R, Sundaram B, Sharma BR, et al. ADAR1 restricts ZBP1-mediated immune response and PANoptosis to promote tumorigenesis. Cell Rep, 2021, 37(3): 109858. |
62. | Malireddi RKS, Kesavardhana S, Kanneganti TD. ZBP1 and TAK1: master regulators of NLRP3 inflammasome/pyroptosis, apoptosis, and necroptosis (PAN-optosis). Front Cell Infect Microbiol, 2019, 9: 406. |
63. | Oh S, Lee S. Recent advances in ZBP1-derived PANoptosis against viral infections. Front Immunol, 2023, 14: 1148727. |
- 1. Yan WT, Yang YD, Hu XM, et al. Do pyroptosis, apoptosis, and necroptosis (PANoptosis) exist in cerebral ischemia? Evidence from cell and rodent studies. Neural Regen Res, 2022, 17(8): 1761-1768.
- 2. Zhu P, Ke ZR, Chen JX, et al. Advances in mechanism and regulation of PANoptosis: Prospects in disease treatment. Front Immunol, 2023, 14: 1120034.
- 3. Sharma A, Ahmad Farouk I, Lal SK. COVID-19: a review on the novel coronavirus disease evolution, transmission, detection, control and prevention. Viruses, 2021, 13(2): 202.
- 4. Malireddi RKS, Tweedell RE, Kanneganti TD. PANoptosis components, regulation, and implications. Aging (Albany NY), 2020, 12(12): 11163-11164.
- 5. Malik A, Kanneganti TD. Inflammasome activation and assembly at a glance. J Cell Sci, 2017, 130(23): 3955-3963.
- 6. Levine AJ. p53, the cellular gatekeeper for growth and division. Cell, 1997, 88(3): 323-331.
- 7. Fan TJ, Han LH, Cong RS, et al. Caspase family proteases and apoptosis. Acta Biochim Biophys Sin (Shanghai), 2005, 37(11): 719-927.
- 8. Kiraz Y, Adan A, Kartal Yandim M, et al. Major apoptotic mechanisms and genes involved in apoptosis. Tumour Biol, 2016, 37(7): 8471-8486.
- 9. Yuan J, Amin P, Ofengeim D. Necroptosis and RIPK1-mediated neuroinflammation in CNS diseases. Nat Rev Neurosci, 2019, 20(1): 19-33.
- 10. Jiang W, Deng Z, Dai X, et al. PANoptosis: a new insight into oral infectious diseases. Front Immunol, 2021, 12: 789610.
- 11. Tsuchiya K, Nakajima S, Hosojima S, et al. Caspase-1 initiates apoptosis in the absence of gasdermin D. Nat Commun, 2019, 10(1): 2091.
- 12. Kang S, Fernandes-Alnemri T, Rogers C, et al. Caspase-8 scaffolding function and MLKL regulate NLRP3 inflammasome activation downstream of TLR3. Nat Commun, 2015, 6: 7515.
- 13. Guo CH, Fu R, Zhou MJ, et al. Pathogenesis of lupus nephritis: RIP3 dependent necroptosis and NLRP3 inflammasome activation. J Autoimmun, 2019, 103: 102286.
- 14. Shi CX, Cao P, Wang YK, et al. PANoptosis: a cell death characterized by pyroptosis, apoptosis, and necroptosis. J Inflamm Res, 2023, 16: 1523-1532.
- 15. Wang Y, Pandian N, Han JH, et al. Single cell analysis of PANoptosome cell death complexes through an expansion microscopy method. Cell Mol Life Sci, 2022, 79(10): 531.
- 16. Zheng M, Karki R, Vogel P, Kanneganti TD. Caspase-6 is a key regulator of innate immunity, inflammasome activation, and host defense. Cell, 2020, 181(3): 674-687.
- 17. Samir P, Malireddi RKS, Kanneganti TD. The PANoptosome: a deadly protein complex driving pyroptosis, apoptosis, and necroptosis (PANoptosis). Front Cell Infect Microbiol, 2020, 10: 238.
- 18. Kuriakose T, Kanneganti TD. ZBP1: innate sensor regulating cell death and inflammation. Trends Immunol, 2018, 39(2): 123-134.
- 19. Kesavardhana S, Malireddi RKS, Burton AR, et al. The Zα2 domain of ZBP1 is a molecular switch regulating influenza-induced PANoptosis and perinatal lethality during development. J Biol Chem, 2020, 295(24): 8325-8330.
- 20. Banoth B, Tuladhar S, Karki R, et al. ZBP1 promotes fungi-induced inflammasome activation and pyroptosis, apoptosis, and necroptosis (PANoptosis). J Biol Chem, 2020, 295(52): 18276-18283.
- 21. Kanneganti TD, Body-Malapel M, Amer A, et al. Critical role for Cryopyrin/Nalp3 in activation of caspase-1 in response to viral infection and double-stranded RNA. J Biol Chem, 2006, 281(48): 36560-36568.
- 22. Zheng M, Kanneganti TD. The regulation of the ZBP1-NLRP3 inflammasome and its implications in pyroptosis, apoptosis, and necroptosis (PANoptosis). Immunol Rev, 2020, 297(1): 26-38.
- 23. Sundaram B, Pandian N, Mall R, et al. NLRP12-PANoptosome activates PANoptosis and pathology in response to heme and PAMPs. Cell, 2023, 186(13): 2783-2801.
- 24. Sharma BR, Karki R, Kanneganti TD. Role of AIM2 inflammasome in inflammatory diseases, cancer and infection. Eur J Immunol, 2019, 49(11): 1998-2011.
- 25. Lee S, Karki R, Wang YQ, et al. AIM2 forms a complex with pyrin and ZBP1 to drive PANoptosis and host defence. Nature, 2021, 597(7876): 415-419.
- 26. Arrázola MS, Court FA. Commentary on "PANoptosis-like cell death in ischemia/reperfusion injury of retinal neurons". Neural Regen Res, 2023, 18(2): 341.
- 27. Wei X, Xie F, Zhou XX, et al. Role of pyroptosis in inflammation and cancer. Cell Mol Immunol, 2022, 19(9): 971-992.
- 28. Zheng M, Williams EP, Malireddi RKS, et al. Impaired NLRP3 inflammasome activation/pyroptosis leads to robust inflammatory cell death via caspase-8/RIPK3 during coronavirus infection. J Biol Chem, 2020, 295(41): 14040-14052.
- 29. Li P, Nijhawan D, Budihardjo I, et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell, 1997, 91(4): 479-489.
- 30. Meyer NJ, Gattinoni L, Calfee CS. Acute respiratory distress syndrome. Lancet, 2021, 398(10300): 622-637.
- 31. Huppert LA, Matthay MA, Ware LB. Pathogenesis of acute respiratory distress syndrome. Semin Respir Crit Care Med, 2019, 40(1): 31-39.
- 32. Messaoud-Nacer Y, Culerier E, Rose S, et al. STING agonist diABZI induces PANoptosis and DNA mediated acute respiratory distress syndrome (ARDS). Cell Death Dis, 2022, 13(3): 269.
- 33. Guan WJ, Ni ZY, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med, 2020, 382(18): 1708-1720.
- 34. Heinen N, Klöhn M, Steinmann E, et al. In vitro lung models and their application to study SARS-CoV-2 pathogenesis and disease. Viruses, 2021, 13(5): 792.
- 35. Puelles VG, Lütgehetmann M, Lindenmeyer MT, et al. Multiorgan and renal tropism of SARS-CoV-2. N Engl J Med, 2020, 383(6): 590-592.
- 36. Xu JC, Xu XY, Jiang LN, et al. SARS-CoV-2 induces transcriptional signatures in human lung epithelial cells that promote lung fibrosis. Respir Res, 2020, 21(1): 182.
- 37. Zhao FXN, Ma QW, Yue Q, et al. SARS-CoV-2 infection and lung regeneration. Clin Microbiol Rev, 2022, 35(2): e0018821.
- 38. Karki R, Sharma BR, Tuladhar S, et al. Synergism of TNF-α and IFN-γ triggers inflammatory cell death, tissue damage, and mortality in SARS-CoV-2 infection and cytokine shock syndromes. Cell, 2021, 184(1): 149-168.
- 39. He WT, Wan H, Hu L, et al. Gasdermin D is an executor of pyroptosis and required for interleukin-1βsecretion. Cell Res, 2015, 25(12): 1285-1298.
- 40. Newton K, Wickliffe KE, Dugger DL, et al. Cleavage of RIPK1 by caspase-8 is crucial for limiting apoptosis and necroptosis. Nature, 2019, 574(7778): 428-431.
- 41. Jose RJ, Manuel A. COVID-19 cytokine storm: the interplay between inflammation and coagulation. Lancet Respir Med, 2020, 8(6): e46-e47.
- 42. Lee JW, Chun W, Lee HJ, et al. The role of macrophages in the development of acute and chronic inflammatory lung diseases. Cells, 2021, 10(4): 897.
- 43. Robb CT, Regan KH, Dorward DA, et al. Key mechanisms governing resolution of lung inflammation. Semin Immunopathol, 2016, 38(4): 425-448.
- 44. Cicco S, Cicco G, Racanelli V, et al. Neutrophil extracellular traps (NETs) and damage-associated molecular patterns (DAMPs): two potential targets for COVID-19 treatment. Mediators Inflamm, 2020, 2020: 7527953.
- 45. Schifanella L, Anderson J, Wieking G, et al. The defenders of the alveolus succumb in COVID-19 pneumonia to SARS-CoV-2 and necroptosis, pyroptosis, and PANoptosis. J Infect Dis, 2023, 227(11): 1245-1254.
- 46. Ruaro B, Salton F, Braga L, et al. The history and mystery of alveolar epithelial type II cells: focus on their physiologic and pathologic role in lung. Int J Mol Sci, 2021, 22(5): 2566.
- 47. Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin, 2021, 71(3): 209-249.
- 48. Ruiz-Cordero R, Devine WP. Targeted therapy and checkpoint immunotherapy in lung cancer. Surg Pathol Clin, 2020, 13(1): 17-33.
- 49. Bade BC, Dela Cruz CS. Lung Cancer 2020: Epidemiology, Etiology, and Prevention. Clin Chest Med, 2020, 41(1): 1-24.
- 50. Gómez-Angelats M, Cidlowski JA. Molecular evidence for the nuclear localization of FADD. Cell Death Differ, 2003, 10(7): 791-797.
- 51. Wei S, Chen Z, Ling X, et al. Comprehensive analysis illustrating the role of PANoptosis-related genes in lung cancer based on bioinformatic algorithms and experiments. Front Pharmacol, 2023, 14: 1115221.
- 52. Hartl D, Tirouvanziam R, Laval J, et al. Innate immunity of the lung: from basic mechanisms to translational medicine. J Innate Immun, 2018, 10(5-6): 487-501.
- 53. Kruger P, Saffarzadeh M, Weber AN, et al. Neutrophils: between host defence, immune modulation, and tissue injury. PLoS Pathog, 2015, 11(3): e1004651.
- 54. Tang AC, Turvey SE, Alves MP, et al. Current concepts: host-pathogen interactions in cystic fibrosis airways disease. Eur Respir Rev, 2014, 23(133): 320-332.
- 55. Regamey N, Tsartsali L, Hilliard TN, et al. Distinct patterns of inflammation in the airway lumen and bronchial mucosa of children with cystic fibrosis. Thorax, 2012, 67(2): 164-170.
- 56. Van Opdenbosch N, Lamkanfi M. Caspases in cell death, inflammation, and disease. Immunity, 2019, 50(6): 1352-1364.
- 57. 赵鹏跃, 姚人骐, 杜晓辉, 等. 泛凋亡在人类疾病中的作用研究进展. 中华医学杂志, 2022, 102(32): 2549-2554.
- 58. Sun X, Yang YP, Meng XN, et al. PANoptosis: mechanisms, biology, and role in disease[J/OL]. Immunol Rev, [2023-10-12].
- 59. Cui YH, Wang XQ, Lin FY, et al. MiR-29a-3p improves acute lung injury by reducing alveolar epithelial cell PANoptosis. Aging Dis, 2022, 13(3): 899-909.
- 60. Christgen S, Zheng M, Kesavardhana S, et al. Identification of the PANoptosome: a molecular platform triggering pyroptosis, apoptosis, and necroptosis (PANoptosis). Front Cell Infect Microbiol, 2020, 10: 237.
- 61. Karki R, Sundaram B, Sharma BR, et al. ADAR1 restricts ZBP1-mediated immune response and PANoptosis to promote tumorigenesis. Cell Rep, 2021, 37(3): 109858.
- 62. Malireddi RKS, Kesavardhana S, Kanneganti TD. ZBP1 and TAK1: master regulators of NLRP3 inflammasome/pyroptosis, apoptosis, and necroptosis (PAN-optosis). Front Cell Infect Microbiol, 2019, 9: 406.
- 63. Oh S, Lee S. Recent advances in ZBP1-derived PANoptosis against viral infections. Front Immunol, 2023, 14: 1148727.
-
Previous Article
有毒气体导致急性肺损伤的作用机制研究进展