Citation: HONG Xueling, LI Yongxia, AI Li, LIU Zhijuan, ZHOU Fan. 阻塞性睡眠呼吸暂停合并2型糖尿病的机制. Chinese Journal of Respiratory and Critical Care Medicine, 2024, 23(9): 666-672. doi: 10.7507/1671-6205.202310072 Copy
Copyright © the editorial department of Chinese Journal of Respiratory and Critical Care Medicine of West China Medical Publisher. All rights reserved
1. | 王君, 郑小兵, 张希龙, 等. 心血管病患者中阻塞性睡眠呼吸暂停的临床特征及危险因素分析. 临床肺科杂志, 2022, 27(6): 817-821. |
2. | Iturriaga R. Carotid body contribution to the physio‐pathological consequences of intermittent hypoxia: role of nitro‐oxidative stress and inflammation. J Physiol, 2023: JP284112. |
3. | 赵莎, 雷璇, 熊佳敏, 等. 阻塞性睡眠呼吸暂停综合征与炎症相关性研究进展. 中国比较医学杂志, 2022, 32(11): 101-106. |
4. | Roden M, Shulman GI. The integrative biology of type 2 diabetes. Nature, 2019, 576(7785): 51-60. |
5. | Shen H, Zhao J, Liu Y, et al. Interactions between and Shared Molecular Mechanisms of Diabetic Peripheral Neuropathy and Obstructive Sleep Apnea in Type 2 Diabetes Patients. J Diabetes Res, 2018, 2018: 1-15. |
6. | Faria A, Laher I, Fasipe B, et al. Impact of Obstructive Sleep Apnea and Current Treatments on the Developmentand Progression of Type 2 Diabetes. Curr Diabetes Rev, 2022, 18(9): e160222201169. |
7. | Alterki A, Abu-Farha M, Al Shawaf E, et al. Investigating the Relationship between Obstructive Sleep Apnoea, Inflammation and Cardio-Metabolic Diseases. Int J Mol Sci, 2023, 24(7): 6807. |
8. | Khaire SS, Gada JV, Utpat KV, et al. A study of glycemic variability in patients with type 2 diabetes mellitus with obstructive sleep apnea syndrome using a continuous glucose monitoring system. Clin Diabetes Endocrinol, 2020, 6(1): 10. |
9. | Pugliese G, Barrea L, Laudisio D, et al. Sleep Apnea, Obesity, and Disturbed Glucose Homeostasis: Epidemiologic Evidence, Biologic Insights, and Therapeutic Strategies. Curr Obes Rep, 2020, 9(1): 30-38. |
10. | Marathe PH, Gao HX, Close KL. American Diabetes Association Standards of Medical Care in Diabetes 2017. J Diabetes, 2017, 9(4): 320-324. |
11. | Butt A M, Syed U, Arshad A. Predictive Value of Clinical and Questionnaire Based Screening Tools of Obstructive Sleep Apnea in Patients With Type 2 Diabetes Mellitus. Cureus, 2021, 13(9): e18009. |
12. | Ota H, Fujita Y, Yamauchi M, et al. Relationship Between Intermittent Hypoxia and Type 2 Diabetes in Sleep Apnea Syndrome. Int J Mol Sci, 2019, 20(19): 4756. |
13. | Kurinami N, Sugiyama S, Ijima H, et al. Clinical usefulness of the body muscle-to-fat ratio for screening obstructive sleep apnea syndrome in patients with inadequately controlled type 2 diabetes mellitus. Diabetes Res Clin Pract, 2018, 143: 134-139. |
14. | Li M, Li X, Lu Y. Obstructive Sleep Apnea Syndrome and Metabolic Diseases. Endocrinology, 2018, 159(7): 2670-2675. |
15. | Gabryelska A, Karuga F F, Szmyd B, et al. HIF-1α as a Mediator of Insulin Resistance, T2DM, and Its Complications: Potential Links With Obstructive Sleep Apnea. Front Physiol, 2020, 11: 1035. |
16. | Prabhakar NR, Peng YJ, Nanduri J. Hypoxia-inducible factors and obstructive sleep apnea. J Clin Invest, 2020, 130(10): 5042-5051. |
17. | Nagao A, Kobayashi M, Koyasu S, et al. HIF-1-Dependent Reprogramming of Glucose Metabolic Pathway of Cancer Cells and Its Therapeutic Significance. Int J Mol Sci, 2019, 20(2): 238. |
18. | Sacramento JF, Ribeiro MJ, Rodrigues T, et al. Insulin resistance is associated with tissue-specific regulation of HIF-1α and HIF-2α during mild chronic intermittent hypoxia. Respir Physiol Neurobiol, 2016, 228: 30-38. |
19. | Carlessi R, Chen Y, Rowlands J, et al. GLP-1 receptor signalling promotes β-cell glucose metabolism via mTOR-dependent HIF-1α activation. Sci Rep, 2017, 7(1): 2661. |
20. | Maniaci A, Iannella G, Cocuzza S, et al. Oxidative Stress and Inflammation Biomarker Expression in Obstructive Sleep Apnea Patients. J Clin Med, 2021, 10(2): 277. |
21. | Orrù G, Storari M, Scano A, et al. Obstructive Sleep Apnea, oxidative stress, inflammation and endothelial dysfunction-An overview of predictive laboratory biomarkers. Eur Rev Med Pharmacol Sci, 2020, 24(12): 6939-6948. |
22. | Kargar B, Zamanian Z, Hosseinabadi MB, et al. Understanding the role of oxidative stress in the incidence of metabolic syndrome and obstructive sleep apnea. BMC Endocr Disord, 2021, 21(1): 77. |
23. | 杨丽娟, 汪鸿. OSAS合并心脑血管病的炎性机制及研究的进展. 心血管康复医学杂志, 2022, 31(4): 524-527. |
24. | Pau MC, Zinellu A, Mangoni A A, et al. Evaluation of Inflammation and Oxidative Stress Markers in Patients with Obstructive Sleep Apnea (OSA). J Clin Med, 2023, 12(12): 3935. |
25. | 张士珑, 卢海燕. 阻塞性睡眠呼吸暂停低通气综合征与NF-κB、TNF-α和IL-6的关系. 北京口腔医学, 2018, 26(2): 118-120. |
26. | Zhang J, Tian L, Guo L. Changes of aldosterone levels in patients with type 2 diabetes complicated by moderate to severe obstructive sleep apnea–hypopnea syndrome before and after treatment with continuous positive airway pressure. J Int Med Res, 2019, 47(10): 4723-4733. |
27. | Labarca G, Gower J, Lamperti L, et al. Chronic intermittent hypoxia in obstructive sleep apnea: a narrative review from pathophysiological pathways to a precision clinical approach. Sleep Breath, 2020, 24(2): 751-760. |
28. | Ma M, Liu H, Yu J, et al. Triglyceride is independently correlated with insulin resistance and islet beta cell function: a study in population with different glucose and lipid metabolism states. Lipids Health Dis, 2020, 19(1): 121. |
29. | Anusree SS. Insulin resistance in 3T3-L1 adipocytes by TNF-α is improved by punicic acid through upregulation of insulin signalling pathway and endocrine function, and downregulation of proinflammatory cytokines. Biochimie, 2018, 146: 79-86. |
30. | Masenga SK, Kabwe LS, Chakulya M, et al. Mechanisms of Oxidative Stress in Metabolic Syndrome. Int J Mol Sci, 2023, 24(9): 7898. |
31. | Dludla PV, Mabhida S E, Ziqubu K, et al. Pancreatic β-cell dysfunction in type 2 diabetes: Implications of inflammation and oxidative stress. World J Diabetes, 2023, 14(3): 130-146. |
32. | Cunha-Guimaraes J P, Guarino M P, Timóteo A T, et al. Carotid body chemosensitivity: early biomarker of dysmetabolism in humans. Eur J Endocrinol, 2020, 182(6): 549-557. |
33. | Roder F, Strotmann J, Fox H, et al. Interactions of Sleep Apnea, the Autonomic Nervous System, and Its Impact on Cardiac Arrhythmias. Curr Sleep Med Rep, 2018, 4(2): 160-169. |
34. | Carpentier AC. 100 th anniversary of the discovery of insulin perspective: insulin and adipose tissue fatty acid metabolism. Am J Physiol Endocrinol Metab, 2021, 320(4): E653-E670. |
35. | Shobatake R, Ota H, Takahashi N, et al. The Impact of Intermittent Hypoxia on Metabolism and Cognition. Int J Mol Sci, 2022, 23(21): 12957. |
36. | Protasiewicz Timofticiuc D. Stop-Bang Questionnaire – an Easy Tool for Identifying Obstructive Sleep Apnea Syndrome in Patients with Type 2 Diabetes Mellitus. Acta Endocrinol (Buchar), 2022, 18(1): 49-57. |
37. | Koh HCE, Van Vliet S, Cao C, et al. Effect of obstructive sleep apnea on glucose metabolism. Eur J Endocrinol, 2022, 186(4): 457-467. |
38. | Foster G D, Borradaile KE, Sanders MH, et al. A Randomized Study on the Effect of Weight Loss on Obstructive Sleep Apnea Among Obese Patients With Type 2 Diabetes. Arch Intern Med, 2009, 169(17): 1619-1626. |
39. | Or Koca A, İriz A, Hazır B, et al. Relationships of orexigenic and anorexigenic hormones with body fat distribution in patients with obstructive sleep apnea syndrome. Eur Arch Otorhinolaryngol, 2023, 280(5): 2445-2452. |
40. | Yang Q, Xu H, Zhang H, et al. Serum triglyceride glucose index is a valuable predictor for visceral obesity in patients with type 2 diabetes: a cross-sectional study. Cardiovasc Diabetol, 2023, 22(1): 98. |
41. | Perger E, Taranto-Montemurro L. Upper airway muscles: influence on obstructive sleep apnoea pathophysiology and pharmacological and technical treatment options. Curr Opin Pulm Med, 2021, 27(6): 505-513. |
42. | Wei Z, Chen Y, Upender R P. Sleep Disturbance and Metabolic Dysfunction: The Roles of Adipokines. Int J Mol Sci, 2022, 23(3): 1706. |
43. | Gasmi A, Noor S, Menzel A, et al. Obesity and Insulin Resistance: Associations with Chronic Inflammation, Genetic and Epigenetic Factors. Curr Med Chem, 2021, 28(4): 800-826. |
44. | Duan Y, Zhang S, Li Y, et al. Potential regulatory role of miRNA and mRNA link to metabolism affected by chronic intermittent hypoxia. Front Genet, 2022, 13: 963184. |
45. | D'Angelo GF, De Mello AA F, Schorr F, et al. Muscle and visceral fat infiltration: A potential mechanism to explain the worsening of obstructive sleep apnea with age. Sleep Med, 2023, 104: 42-48. |
46. | Ma B, Li Y, Wang X, et al. Association Between Abdominal Adipose Tissue Distribution and Obstructive Sleep Apnea in Chinese Obese Patients. Front Endocrinol (Lausanne), 2022, 13: 847324. |
47. | Huang X, Huang X, Guo H, et al. Intermittent hypoxia-induced METTL3 downregulation facilitates MGLL-mediated lipolysis of adipocytes in OSAS. Cell Death Discov, 2022, 8(1): 352. |
48. | Musutova M, Weiszenstein M, Koc M, et al. Intermittent Hypoxia Stimulates Lipolysis, But Inhibits Differentiation and De Novo Lipogenesis in 3T3-L1 Cells. Metab Syndr Relat Disord, 2020, 18(3): 146-153. |
49. | Rehman K, Akash MSH. Mechanism of Generation of Oxidative Stress and Pathophysiology of Type 2 Diabetes Mellitus: How Are They Interlinked?J Cell Biochem, 2017, 118(11): 3577-3585. |
50. | Acosta-Montaño P, García-González V. Effects of Dietary Fatty Acids in Pancreatic Beta Cell Metabolism, Implications in Homeostasis. Nutrients, 2018, 10(4): 393. |
51. | Yan G, Li F, Elia C, et al. Association of lipid accumulation product trajectories with 5-year incidence of type 2 diabetes in Chinese adults: a cohort study. Nutr Metab (Lond), 2019, 16: 72. |
52. | Xu X, Xu J. Effects of different obesity-related adipokines on the occurrence of obstructive sleep apnea. Endocr J, 2020, 67(5): 485-500. |
53. | Kozu Y, Kurosawa Y, Yamada S, et al. Cluster analysis identifies a pathophysiologically distinct subpopulation with increased serum leptin levels and severe obstructive sleep apnea. Sleep Breath, 2021, 25(2): 767-776. |
54. | Isaksen VT, Larsen MA, Goll R, et al. Correlations between modest weight loss and leptin to adiponectin ratio, insulin and leptin resensitization in a small cohort of Norwegian individuals with obesity. Endocr Metab Sci, 2023, 12: 100134. |
55. | Buonfiglio D, Tchio C, Furigo I, et al. Removing melatonin receptor type 1 signaling leads to selective leptin resistance in the arcuate nucleus. J Pineal Res, 2019, 67(2): e12580. |
56. | Catalina MO S, Redondo PC, Granados MP, et al. New Insights into Adipokines as Potential Biomarkers for Type-2 Diabetes Mellitus. Curr Med Chem, 2019, 26(22): 4119-4144. |
57. | Wei Z, Chen Y, Upender RP. Adipokines in Sleep Disturbance and Metabolic Dysfunction: Insights from Network Analysis. Clocks Sleep, 2022, 4(3): 321-331. |
58. | Gauda EB, Conde S, Bassi M, et al. Leptin: Master Regulator of Biological Functions that Affects Breathing. Compr Physiol, 2020, 10(3): 1047-1083. |
59. | Yagishita Y, Uruno A, Fukutomi T, et al. Nrf2 Improves Leptin and Insulin Resistance Provoked by Hypothalamic Oxidative Stress. Cell Rep, 2017, 18(8): 2030-2044. |
60. | Berdina ON, Madaeva IM, Bolshakova SE, et al. Circadian Melatonin Secretion In Obese Adolescents With Or Without Obstructive Sleep Apnea. Russ Open Med J, 2020, 9(4): e0402. |
61. | Song SO, He K, Narla RR, et al. Metabolic Consequences of Obstructive Sleep Apnea Especially Pertaining to Diabetes Mellitus and Insulin Sensitivity. Diabetes Metab J, 2019, 43(2): 144-155. |
62. | Celikhisar H, Ilkhan GD. Alterations in Serum Adropin, Adiponectin, and Proinflammatory Cytokine Levels in OSAS. Can Respir J, 2020, 2020: 2571283. |
63. | Lee C, Kushida C, Abisheganaden J. Epidemiological and pathophysiological evidence supporting links between obstructive sleep apnoea and Type 2 diabetes mellitus. Singapore Med J, 2019, 60(2): 54-56. |
64. | Yagihashi S. Glucotoxic Mechanisms and Related Therapeutic Approaches. Int Rev Neurobiol, 2016, 127: 121-149. |
65. | 中国2型糖尿病防治指南(2020年版)(下). 中国实用内科杂志, 2021, 41(9): 757-784. |
66. | Stino AM, Smith AG. Peripheral neuropathy in prediabetes and the metabolic syndrome. J Diabetes Investig, 2017, 8(5): 646-655. |
67. | Martínez Cerón E, Casitas Mateos R, García-Río F. Sleep Apnea–Hypopnea Syndrome and Type 2 Diabetes. A Reciprocal Relationship?Arch Bronconeumol, 2015, 51(3): 128-139. |
68. | Altaf QAA, Ali A, Piya MK, et al. The relationship between obstructive sleep apnea and intra-epidermal nerve fiber density, PARP activation and foot ulceration in patients with type 2 diabetes. J Diabetes Complications, 2016, 30(7): 1315-1320. |
69. | Tahrani AA, Ali A, Raymond NT, et al. Obstructive sleep apnea and diabetic neuropathy: a novel association in patients with type 2 diabetes. Am J Respir Crit Care Med, 2012, 186(5): 434-441. |
70. | Drel VR, Pacher P, Stavniichuk R, et al. Poly(ADP-ribose)polymerase inhibition counteracts renal hypertrophy and multiple manifestations of peripheral neuropathy in diabetic Akita mice. Int J Mol Med, 2011, 28(4): 629-635. |
71. | Chiu SC, Huang SY, Tsai YC, et al. Poly (ADP-ribose) polymerase plays an important role in intermittent hypoxia-induced cell death in rat cerebellar granule cells. J Biomed Sci, 2012, 19(1): 29. |
72. | Pal R, Bhadada SK. AGEs accumulation with vascular complications, glycemic control and metabolic syndrome: A narrative review. Bone, 2023, 176: 116884. |
73. | Kikuchi S, Shinpo K, Moriwaka F, et al. Neurotoxicity of methylglyoxal and 3-deoxyglucosone on cultured cortical neurons: Synergism between glycation and oxidative stress, possibly involved in neurodegenerative diseases. J Neurosci Res, 1999, 57(2): 280-289. |
74. | Xu JX, Cai W, Sun JF, et al. Serum advanced glycation end products are associated with insulin resistance in male nondiabetic patients with obstructive sleep apnea. Sleep Breath, 2015, 19(3): 827-833. |
75. | Brownlee M. Nonenzymatic glycosylation of macromolecules. Prospects of pharmacologic modulation. Diabetes, 1992, 41 Suppl 2: 57-60. |
76. | King G L, Brownlee M. The cellular and molecular mechanisms of diabetic complications. Endocrinol Metab Clin North Am, 1996, 25(2): 255-270. |
77. | Pauza AG, Thakkar P, Tasic T, et al. GLP1R Attenuates Sympathetic Response to High Glucose via Carotid Body Inhibition. Circ Res, 2022, 130(5): 694-707. |
78. | Conde SV, Sacramento JF, Guarino MP. Carotid body: a metabolic sensor implicated in insulin resistance. Physiol Genomics, 2018, 50(3): 208-214. |
- 1. 王君, 郑小兵, 张希龙, 等. 心血管病患者中阻塞性睡眠呼吸暂停的临床特征及危险因素分析. 临床肺科杂志, 2022, 27(6): 817-821.
- 2. Iturriaga R. Carotid body contribution to the physio‐pathological consequences of intermittent hypoxia: role of nitro‐oxidative stress and inflammation. J Physiol, 2023: JP284112.
- 3. 赵莎, 雷璇, 熊佳敏, 等. 阻塞性睡眠呼吸暂停综合征与炎症相关性研究进展. 中国比较医学杂志, 2022, 32(11): 101-106.
- 4. Roden M, Shulman GI. The integrative biology of type 2 diabetes. Nature, 2019, 576(7785): 51-60.
- 5. Shen H, Zhao J, Liu Y, et al. Interactions between and Shared Molecular Mechanisms of Diabetic Peripheral Neuropathy and Obstructive Sleep Apnea in Type 2 Diabetes Patients. J Diabetes Res, 2018, 2018: 1-15.
- 6. Faria A, Laher I, Fasipe B, et al. Impact of Obstructive Sleep Apnea and Current Treatments on the Developmentand Progression of Type 2 Diabetes. Curr Diabetes Rev, 2022, 18(9): e160222201169.
- 7. Alterki A, Abu-Farha M, Al Shawaf E, et al. Investigating the Relationship between Obstructive Sleep Apnoea, Inflammation and Cardio-Metabolic Diseases. Int J Mol Sci, 2023, 24(7): 6807.
- 8. Khaire SS, Gada JV, Utpat KV, et al. A study of glycemic variability in patients with type 2 diabetes mellitus with obstructive sleep apnea syndrome using a continuous glucose monitoring system. Clin Diabetes Endocrinol, 2020, 6(1): 10.
- 9. Pugliese G, Barrea L, Laudisio D, et al. Sleep Apnea, Obesity, and Disturbed Glucose Homeostasis: Epidemiologic Evidence, Biologic Insights, and Therapeutic Strategies. Curr Obes Rep, 2020, 9(1): 30-38.
- 10. Marathe PH, Gao HX, Close KL. American Diabetes Association Standards of Medical Care in Diabetes 2017. J Diabetes, 2017, 9(4): 320-324.
- 11. Butt A M, Syed U, Arshad A. Predictive Value of Clinical and Questionnaire Based Screening Tools of Obstructive Sleep Apnea in Patients With Type 2 Diabetes Mellitus. Cureus, 2021, 13(9): e18009.
- 12. Ota H, Fujita Y, Yamauchi M, et al. Relationship Between Intermittent Hypoxia and Type 2 Diabetes in Sleep Apnea Syndrome. Int J Mol Sci, 2019, 20(19): 4756.
- 13. Kurinami N, Sugiyama S, Ijima H, et al. Clinical usefulness of the body muscle-to-fat ratio for screening obstructive sleep apnea syndrome in patients with inadequately controlled type 2 diabetes mellitus. Diabetes Res Clin Pract, 2018, 143: 134-139.
- 14. Li M, Li X, Lu Y. Obstructive Sleep Apnea Syndrome and Metabolic Diseases. Endocrinology, 2018, 159(7): 2670-2675.
- 15. Gabryelska A, Karuga F F, Szmyd B, et al. HIF-1α as a Mediator of Insulin Resistance, T2DM, and Its Complications: Potential Links With Obstructive Sleep Apnea. Front Physiol, 2020, 11: 1035.
- 16. Prabhakar NR, Peng YJ, Nanduri J. Hypoxia-inducible factors and obstructive sleep apnea. J Clin Invest, 2020, 130(10): 5042-5051.
- 17. Nagao A, Kobayashi M, Koyasu S, et al. HIF-1-Dependent Reprogramming of Glucose Metabolic Pathway of Cancer Cells and Its Therapeutic Significance. Int J Mol Sci, 2019, 20(2): 238.
- 18. Sacramento JF, Ribeiro MJ, Rodrigues T, et al. Insulin resistance is associated with tissue-specific regulation of HIF-1α and HIF-2α during mild chronic intermittent hypoxia. Respir Physiol Neurobiol, 2016, 228: 30-38.
- 19. Carlessi R, Chen Y, Rowlands J, et al. GLP-1 receptor signalling promotes β-cell glucose metabolism via mTOR-dependent HIF-1α activation. Sci Rep, 2017, 7(1): 2661.
- 20. Maniaci A, Iannella G, Cocuzza S, et al. Oxidative Stress and Inflammation Biomarker Expression in Obstructive Sleep Apnea Patients. J Clin Med, 2021, 10(2): 277.
- 21. Orrù G, Storari M, Scano A, et al. Obstructive Sleep Apnea, oxidative stress, inflammation and endothelial dysfunction-An overview of predictive laboratory biomarkers. Eur Rev Med Pharmacol Sci, 2020, 24(12): 6939-6948.
- 22. Kargar B, Zamanian Z, Hosseinabadi MB, et al. Understanding the role of oxidative stress in the incidence of metabolic syndrome and obstructive sleep apnea. BMC Endocr Disord, 2021, 21(1): 77.
- 23. 杨丽娟, 汪鸿. OSAS合并心脑血管病的炎性机制及研究的进展. 心血管康复医学杂志, 2022, 31(4): 524-527.
- 24. Pau MC, Zinellu A, Mangoni A A, et al. Evaluation of Inflammation and Oxidative Stress Markers in Patients with Obstructive Sleep Apnea (OSA). J Clin Med, 2023, 12(12): 3935.
- 25. 张士珑, 卢海燕. 阻塞性睡眠呼吸暂停低通气综合征与NF-κB、TNF-α和IL-6的关系. 北京口腔医学, 2018, 26(2): 118-120.
- 26. Zhang J, Tian L, Guo L. Changes of aldosterone levels in patients with type 2 diabetes complicated by moderate to severe obstructive sleep apnea–hypopnea syndrome before and after treatment with continuous positive airway pressure. J Int Med Res, 2019, 47(10): 4723-4733.
- 27. Labarca G, Gower J, Lamperti L, et al. Chronic intermittent hypoxia in obstructive sleep apnea: a narrative review from pathophysiological pathways to a precision clinical approach. Sleep Breath, 2020, 24(2): 751-760.
- 28. Ma M, Liu H, Yu J, et al. Triglyceride is independently correlated with insulin resistance and islet beta cell function: a study in population with different glucose and lipid metabolism states. Lipids Health Dis, 2020, 19(1): 121.
- 29. Anusree SS. Insulin resistance in 3T3-L1 adipocytes by TNF-α is improved by punicic acid through upregulation of insulin signalling pathway and endocrine function, and downregulation of proinflammatory cytokines. Biochimie, 2018, 146: 79-86.
- 30. Masenga SK, Kabwe LS, Chakulya M, et al. Mechanisms of Oxidative Stress in Metabolic Syndrome. Int J Mol Sci, 2023, 24(9): 7898.
- 31. Dludla PV, Mabhida S E, Ziqubu K, et al. Pancreatic β-cell dysfunction in type 2 diabetes: Implications of inflammation and oxidative stress. World J Diabetes, 2023, 14(3): 130-146.
- 32. Cunha-Guimaraes J P, Guarino M P, Timóteo A T, et al. Carotid body chemosensitivity: early biomarker of dysmetabolism in humans. Eur J Endocrinol, 2020, 182(6): 549-557.
- 33. Roder F, Strotmann J, Fox H, et al. Interactions of Sleep Apnea, the Autonomic Nervous System, and Its Impact on Cardiac Arrhythmias. Curr Sleep Med Rep, 2018, 4(2): 160-169.
- 34. Carpentier AC. 100 th anniversary of the discovery of insulin perspective: insulin and adipose tissue fatty acid metabolism. Am J Physiol Endocrinol Metab, 2021, 320(4): E653-E670.
- 35. Shobatake R, Ota H, Takahashi N, et al. The Impact of Intermittent Hypoxia on Metabolism and Cognition. Int J Mol Sci, 2022, 23(21): 12957.
- 36. Protasiewicz Timofticiuc D. Stop-Bang Questionnaire – an Easy Tool for Identifying Obstructive Sleep Apnea Syndrome in Patients with Type 2 Diabetes Mellitus. Acta Endocrinol (Buchar), 2022, 18(1): 49-57.
- 37. Koh HCE, Van Vliet S, Cao C, et al. Effect of obstructive sleep apnea on glucose metabolism. Eur J Endocrinol, 2022, 186(4): 457-467.
- 38. Foster G D, Borradaile KE, Sanders MH, et al. A Randomized Study on the Effect of Weight Loss on Obstructive Sleep Apnea Among Obese Patients With Type 2 Diabetes. Arch Intern Med, 2009, 169(17): 1619-1626.
- 39. Or Koca A, İriz A, Hazır B, et al. Relationships of orexigenic and anorexigenic hormones with body fat distribution in patients with obstructive sleep apnea syndrome. Eur Arch Otorhinolaryngol, 2023, 280(5): 2445-2452.
- 40. Yang Q, Xu H, Zhang H, et al. Serum triglyceride glucose index is a valuable predictor for visceral obesity in patients with type 2 diabetes: a cross-sectional study. Cardiovasc Diabetol, 2023, 22(1): 98.
- 41. Perger E, Taranto-Montemurro L. Upper airway muscles: influence on obstructive sleep apnoea pathophysiology and pharmacological and technical treatment options. Curr Opin Pulm Med, 2021, 27(6): 505-513.
- 42. Wei Z, Chen Y, Upender R P. Sleep Disturbance and Metabolic Dysfunction: The Roles of Adipokines. Int J Mol Sci, 2022, 23(3): 1706.
- 43. Gasmi A, Noor S, Menzel A, et al. Obesity and Insulin Resistance: Associations with Chronic Inflammation, Genetic and Epigenetic Factors. Curr Med Chem, 2021, 28(4): 800-826.
- 44. Duan Y, Zhang S, Li Y, et al. Potential regulatory role of miRNA and mRNA link to metabolism affected by chronic intermittent hypoxia. Front Genet, 2022, 13: 963184.
- 45. D'Angelo GF, De Mello AA F, Schorr F, et al. Muscle and visceral fat infiltration: A potential mechanism to explain the worsening of obstructive sleep apnea with age. Sleep Med, 2023, 104: 42-48.
- 46. Ma B, Li Y, Wang X, et al. Association Between Abdominal Adipose Tissue Distribution and Obstructive Sleep Apnea in Chinese Obese Patients. Front Endocrinol (Lausanne), 2022, 13: 847324.
- 47. Huang X, Huang X, Guo H, et al. Intermittent hypoxia-induced METTL3 downregulation facilitates MGLL-mediated lipolysis of adipocytes in OSAS. Cell Death Discov, 2022, 8(1): 352.
- 48. Musutova M, Weiszenstein M, Koc M, et al. Intermittent Hypoxia Stimulates Lipolysis, But Inhibits Differentiation and De Novo Lipogenesis in 3T3-L1 Cells. Metab Syndr Relat Disord, 2020, 18(3): 146-153.
- 49. Rehman K, Akash MSH. Mechanism of Generation of Oxidative Stress and Pathophysiology of Type 2 Diabetes Mellitus: How Are They Interlinked?J Cell Biochem, 2017, 118(11): 3577-3585.
- 50. Acosta-Montaño P, García-González V. Effects of Dietary Fatty Acids in Pancreatic Beta Cell Metabolism, Implications in Homeostasis. Nutrients, 2018, 10(4): 393.
- 51. Yan G, Li F, Elia C, et al. Association of lipid accumulation product trajectories with 5-year incidence of type 2 diabetes in Chinese adults: a cohort study. Nutr Metab (Lond), 2019, 16: 72.
- 52. Xu X, Xu J. Effects of different obesity-related adipokines on the occurrence of obstructive sleep apnea. Endocr J, 2020, 67(5): 485-500.
- 53. Kozu Y, Kurosawa Y, Yamada S, et al. Cluster analysis identifies a pathophysiologically distinct subpopulation with increased serum leptin levels and severe obstructive sleep apnea. Sleep Breath, 2021, 25(2): 767-776.
- 54. Isaksen VT, Larsen MA, Goll R, et al. Correlations between modest weight loss and leptin to adiponectin ratio, insulin and leptin resensitization in a small cohort of Norwegian individuals with obesity. Endocr Metab Sci, 2023, 12: 100134.
- 55. Buonfiglio D, Tchio C, Furigo I, et al. Removing melatonin receptor type 1 signaling leads to selective leptin resistance in the arcuate nucleus. J Pineal Res, 2019, 67(2): e12580.
- 56. Catalina MO S, Redondo PC, Granados MP, et al. New Insights into Adipokines as Potential Biomarkers for Type-2 Diabetes Mellitus. Curr Med Chem, 2019, 26(22): 4119-4144.
- 57. Wei Z, Chen Y, Upender RP. Adipokines in Sleep Disturbance and Metabolic Dysfunction: Insights from Network Analysis. Clocks Sleep, 2022, 4(3): 321-331.
- 58. Gauda EB, Conde S, Bassi M, et al. Leptin: Master Regulator of Biological Functions that Affects Breathing. Compr Physiol, 2020, 10(3): 1047-1083.
- 59. Yagishita Y, Uruno A, Fukutomi T, et al. Nrf2 Improves Leptin and Insulin Resistance Provoked by Hypothalamic Oxidative Stress. Cell Rep, 2017, 18(8): 2030-2044.
- 60. Berdina ON, Madaeva IM, Bolshakova SE, et al. Circadian Melatonin Secretion In Obese Adolescents With Or Without Obstructive Sleep Apnea. Russ Open Med J, 2020, 9(4): e0402.
- 61. Song SO, He K, Narla RR, et al. Metabolic Consequences of Obstructive Sleep Apnea Especially Pertaining to Diabetes Mellitus and Insulin Sensitivity. Diabetes Metab J, 2019, 43(2): 144-155.
- 62. Celikhisar H, Ilkhan GD. Alterations in Serum Adropin, Adiponectin, and Proinflammatory Cytokine Levels in OSAS. Can Respir J, 2020, 2020: 2571283.
- 63. Lee C, Kushida C, Abisheganaden J. Epidemiological and pathophysiological evidence supporting links between obstructive sleep apnoea and Type 2 diabetes mellitus. Singapore Med J, 2019, 60(2): 54-56.
- 64. Yagihashi S. Glucotoxic Mechanisms and Related Therapeutic Approaches. Int Rev Neurobiol, 2016, 127: 121-149.
- 65. 中国2型糖尿病防治指南(2020年版)(下). 中国实用内科杂志, 2021, 41(9): 757-784.
- 66. Stino AM, Smith AG. Peripheral neuropathy in prediabetes and the metabolic syndrome. J Diabetes Investig, 2017, 8(5): 646-655.
- 67. Martínez Cerón E, Casitas Mateos R, García-Río F. Sleep Apnea–Hypopnea Syndrome and Type 2 Diabetes. A Reciprocal Relationship?Arch Bronconeumol, 2015, 51(3): 128-139.
- 68. Altaf QAA, Ali A, Piya MK, et al. The relationship between obstructive sleep apnea and intra-epidermal nerve fiber density, PARP activation and foot ulceration in patients with type 2 diabetes. J Diabetes Complications, 2016, 30(7): 1315-1320.
- 69. Tahrani AA, Ali A, Raymond NT, et al. Obstructive sleep apnea and diabetic neuropathy: a novel association in patients with type 2 diabetes. Am J Respir Crit Care Med, 2012, 186(5): 434-441.
- 70. Drel VR, Pacher P, Stavniichuk R, et al. Poly(ADP-ribose)polymerase inhibition counteracts renal hypertrophy and multiple manifestations of peripheral neuropathy in diabetic Akita mice. Int J Mol Med, 2011, 28(4): 629-635.
- 71. Chiu SC, Huang SY, Tsai YC, et al. Poly (ADP-ribose) polymerase plays an important role in intermittent hypoxia-induced cell death in rat cerebellar granule cells. J Biomed Sci, 2012, 19(1): 29.
- 72. Pal R, Bhadada SK. AGEs accumulation with vascular complications, glycemic control and metabolic syndrome: A narrative review. Bone, 2023, 176: 116884.
- 73. Kikuchi S, Shinpo K, Moriwaka F, et al. Neurotoxicity of methylglyoxal and 3-deoxyglucosone on cultured cortical neurons: Synergism between glycation and oxidative stress, possibly involved in neurodegenerative diseases. J Neurosci Res, 1999, 57(2): 280-289.
- 74. Xu JX, Cai W, Sun JF, et al. Serum advanced glycation end products are associated with insulin resistance in male nondiabetic patients with obstructive sleep apnea. Sleep Breath, 2015, 19(3): 827-833.
- 75. Brownlee M. Nonenzymatic glycosylation of macromolecules. Prospects of pharmacologic modulation. Diabetes, 1992, 41 Suppl 2: 57-60.
- 76. King G L, Brownlee M. The cellular and molecular mechanisms of diabetic complications. Endocrinol Metab Clin North Am, 1996, 25(2): 255-270.
- 77. Pauza AG, Thakkar P, Tasic T, et al. GLP1R Attenuates Sympathetic Response to High Glucose via Carotid Body Inhibition. Circ Res, 2022, 130(5): 694-707.
- 78. Conde SV, Sacramento JF, Guarino MP. Carotid body: a metabolic sensor implicated in insulin resistance. Physiol Genomics, 2018, 50(3): 208-214.
-
Previous Article
成人非结核分枝杆菌肺病治疗研究进展 -
Next Article
胸腺基质淋巴细胞生成素在支气管哮喘发病机制和治疗中的研究进展