1. |
Goldhaber SZ, Bounameaux H, et al. Pulmonary embolism and deep vein thrombosis. Lancet, 2012, 379(9828): 1835-1846.
|
2. |
Yang P, Li H, Zhang J, et al. Research progress on biomarkers of pulmonary embolism. Clin Respir J, 2021, 15(10): 1046-1055.
|
3. |
McDonald RJ, Schwartz KM, Eckel LJ, et al. The effects of changes in utilization and technological advancements of cross-sectional imaging on radiologist workload. Acad Radiol, 2015, 22(9): 1191-1198.
|
4. |
Rohatgi S, Hanna TN, Sliker CW, et al. After-Hours Radiology: Challenges and Strategies for the Radiologist. AJR Am J Roentgenol, 2015, 205(5): 956-961.
|
5. |
Hanna TN, Zygmont ME, Peterson R, et al. The Effects of Fatigue From Overnight Shifts on Radiology Search Patterns and Diagnostic Performance. J Am Coll Radiol, 2018, 15(12): 1709-1716.
|
6. |
Huang L, Lin W, Xie D, et al. Development and validation of a preoperative CT-based radiomic nomogram to predict pathology invasiveness in patients with a solitary pulmonary nodule: a machine learning approach, multicenter, diagnostic study. Eur Radiol, 2022, 32(3): 1983-1996.
|
7. |
Walsh SLF, Mackintosh J A, Calandriello L, et al. Deep Learning-based Outcome Prediction in Progressive Fibrotic Lung Disease Using High-Resolution Computed Tomography. Am J Respir Crit Care Med, 2022, 206(7): 883-891.
|
8. |
Schwalbe N, Wahl B, et al. Artificial intelligence and the future of global health. Lancet, 2020, 395(10236): 1579-1586.
|
9. |
Wittenberg R, Berger FH, Peters JF, et al. Acute pulmonary embolism: effect of a computer-assisted detection prototype on diagnosis--an observer study. Radiology, 2012, 262(1): 305-313.
|
10. |
Tourassi GD, Floyd CE, Sostman HD, et al. Acute pulmonary embolism: artificial neural network approach for diagnosis. Radiology, 1993, 189(2): 555-558.
|
11. |
Colak E, Kitamura FC, Hobbs SB, et al. The RSNA Pulmonary Embolism CT Dataset. Radiol Artif Intell, 2021, 3(2): e200254.
|
12. |
Tajbakhsh N, Shin JY, Gotway MB, et al. Computer-aided detection and visualization of pulmonary embolism using a novel, compact, and discriminative image representation. Med Image Anal, 2019, 58: 101541.
|
13. |
Huang S C, Kothari T, Banerjee I, et al. PENet-a scalable deep-learning model for automated diagnosis of pulmonary embolism using volumetric CT imaging. NPJ Digit Med, 2020, 3: 61.
|
14. |
Liu Z, Yuan H, Wang H, et al. CAM-Wnet: An effective solution for accurate pulmonary embolism segmentation. Med Phys, 2022, 49(8): 5294-5303.
|
15. |
Pu J, Gezer NS, Ren S, et al. Automated detection and segmentation of pulmonary embolisms on computed tomography pulmonary angiography (CTPA) using deep learning but without manual outlining. Med Image Anal, 2023, 89: 102882.
|
16. |
Humbert M, Kovacs G, Hoeper MM, et al. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Heart J, 2022, 43(38): 3618-3731.
|
17. |
Capone C, Valentini A, Spinillo SL, et al. Radiological differences between chronic thromboembolic pulmonary disease (CTEPD) and chronic thromboembolic pulmonary hypertension (CTEPH). Eur Radiol, 2021, 31(8): 6230-6238.
|
18. |
Rahaghi FN, Ross JC, Agarwal M, et al. Pulmonary vascular morphology as an imaging biomarker in chronic thromboembolic pulmonary hypertension. Pulm Circ, 2016, 6(1): 70-81.
|
19. |
Vainio T, Mäkelä T, Savolainen S, et al. Performance of a 3D convolutional neural network in the detection of hypoperfusion at CT pulmonary angiography in patients with chronic pulmonary embolism: a feasibility study. Eur Radiol Exp, 2021, 5(1): 45.
|
20. |
Vainio T, Mäkelä T, Arkko A, et al. Leveraging open dataset and transfer learning for accurate recognition of chronic pulmonary embolism from CT angiogram maximum intensity projection images. Eur Radiol Exp, 2023, 7(1): 33.
|
21. |
Mastora I, Remy-Jardin M, Masson P, et al. Severity of acute pulmonary embolism: evaluation of a new spiral CT angiographic score in correlation with echocardiographic data. Eur Radiol, 2003, 13(1): 29-35.
|
22. |
Qanadli SD, El Hajjam M, Vieillard-Baron A, et al. New CT index to quantify arterial obstruction in pulmonary embolism: comparison with angiographic index and echocardiography. AJR Am J Roentgenol, 2001, 176(6): 1415-1420.
|
23. |
Liu W, Liu M, Guo X, et al. Evaluation of acute pulmonary embolism and clot burden on CTPA with deep learning. Eur Radiol, 2020, 30(6): 3567-3575.
|
24. |
Zhang H, Cheng Y, Chen Z, et al. Clot burden of acute pulmonary thromboembolism: comparison of two deep learning algorithms, Qanadli score, and Mastora score. Quant Imaging Med Surg, 2022, 12(1): 66-79.
|
25. |
Pienn M, Gertz RJ, Gerhardt F, et al. CT-derived lung vessel morphology correlates with prognostic markers in precapillary pulmonary hypertension. J Heart Lung Transplant, 2024, 43(1): 54-65.
|
26. |
Ghani H, Weir-McCall JR, Ruggiero A, et al. Imaging in chronic thromboembolic pulmonary disease: Current practice and advances. Int J Cardiol Congenit Heart Dis, 2024, 17: 100536.
|