Citation: 李汝芳, 李登媛. CXCL9、CXCL10在肺动脉高压中的研究进展. Chinese Journal of Respiratory and Critical Care Medicine, 2024, 23(11): 818-822. doi: 10.7507/1671-6205.202403027 Copy
Copyright © the editorial department of Chinese Journal of Respiratory and Critical Care Medicine of West China Medical Publisher. All rights reserved
1. | Humbert M, Morrell NW, Archer SL, et al. Cellular and molecular pathobiology of pulmonary arterial hypertension. J Am Coll Cardiol, 2004, 43(12 Suppl S): 13s-24s. |
2. | Boucly A, Savale L, Jaïs X, et al. Association between initial treatment strategy and long-term survival in pulmonary arterial hypertension. Am J Respir Crit Care Med, 2021, 204(7): 842-854. |
3. | Sitbon O, Humbert M, Jaïs X, et al. Long-term response to calcium channel blockers in idiopathic pulmonary arterial hypertension. Circulation, 2005, 111(23): 3105-3111. |
4. | Montani D, Chaumais MC, Guignabert C, et al. Targeted therapies in pulmonary arterial hypertension. Pharmacol Ther, 2014, 141(2): 172-191. |
5. | Humbert M, Lau EM, Montani D, et al. Advances in therapeutic interventions for patients with pulmonary arterial hypertension. Circulation, 2014, 130(24): 2189-2208. |
6. | Farber HW, Miller DP, Poms AD, et al. Five-year outcomes of patients enrolled in the REVEAL Registry. Chest, 2015, 148(4): 1043-1954. |
7. | Perros F, Dorfmüller P, Souza R, et al. Fractalkine-induced smooth muscle cell proliferation in pulmonary hypertension. Eur Respir J, 2007, 29(5): 937-943. |
8. | Hassoun PM, Mouthon L, Barberà JA, et al. Inflammation, growth factors, and pulmonary vascular remodeling. J Am Coll Cardiol, 2009, 54(1 Suppl): S10-S19. |
9. | Tuder RM, Groves B, Badesch DB, et al. Exuberant endothelial cell growth and elements of inflammation are present in plexiform lesions of pulmonary hypertension. Am J Pathol, 1994, 144(2): 275-285. |
10. | Dorfmüller P, Humbert M, Perros F, et al. Fibrous remodeling of the pulmonary venous system in pulmonary arterial hypertension associated with connective tissue diseases. Hum Pathol, 2007, 38(6): 893-902. |
11. | El Chami H, Hassoun PM. Immune and inflammatory mechanisms in pulmonary arterial hypertension. Prog Cardiovasc Dis, 2012, 55(2): 218-228. |
12. | Li C, Liu P, Song R, et al. Immune cells and autoantibodies in pulmonary arterial hypertension. Acta Biochim Biophys Sin (Shanghai), 2017, 49(12): 1047-1057. |
13. | Zlotnik A, Yoshie O. Chemokines: a new classification system and their role in immunity. Immunity, 2000, 12(2): 121-127. |
14. | Hughes CE, Nibbs RJB. A guide to chemokines and their receptors. Febs J, 2018, 285(16): 2944-2971. |
15. | Romagnani P, Lasagni L, Annunziato F, et al. CXC chemokines: the regulatory link between inflammation and angiogenesis. Trends Immunol, 2004, 25(4): 201-209. |
16. | Lasagni L, Francalanci M, Annunziato F, et al. An alternatively spliced variant of CXCR3 mediates the inhibition of endothelial cell growth induced by IP-10, Mig, and I-TAC, and acts as functional receptor for platelet factor 4. J Exp Med, 2003, 197(11): 1537-1549. |
17. | Wu T, Yang W, Sun A, et al. The role of CXC chemokines in cancer progression. Cancers (Basel), 2022, 15(1): 167. |
18. | Ridiandries A, Tan JT, Bursill CA. The role of CC-Chemokines in the regulation of angiogenesis. Int J Mol Sci, 2016, 17(11): 1856. |
19. | Komolafe K, Pacurari M. CXC Chemokines in the pathogenesis of pulmonary disease and pharmacological relevance. Int J Inflam, 2022, 2022: 4558159. |
20. | 杨罡, 赵峻, 张云辉. CXC型趋化因子及其受体轴在慢性阻塞性肺疾病中的研究进展. 中国呼吸与危重监护杂志, 2021, 20(10): 748-752. |
21. | Wu K, Yu S, Liu Q, et al. The clinical significance of CXCL5 in non-small cell lung cancer. Onco Targets Ther, 2017, 10: 5561-5573. |
22. | Zhou C, Gao Y, Ding P, et al. The role of CXCL family members in different diseases. Cell Death Discov, 2023, 9(1): 212. |
23. | White GE, Iqbal AJ, Greaves DR. CC chemokine receptors and chronic inflammation--therapeutic opportunities and pharmacological challenges. Pharmacol Rev, 2013, 65(1): 47-89. |
24. | Sanchez O, Marcos E, Perros F, et al. Role of endothelium-derived CC chemokine ligand 2 in idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med, 2007, 176(10): 1041-1047. |
25. | Mamazhakypov A, Viswanathan G, Lawrie A, et al. The role of chemokines and chemokine receptors in pulmonary arterial hypertension. Br J Pharmacol, 2021, 178(1): 72-89. |
26. | Li Z, Jiang J, Gao S. Potential of C-X-C motif chemokine ligand 1/8/10/12 as diagnostic and prognostic biomarkers in idiopathic pulmonary arterial hypertension. Clin Respir J, 2021, 15(12): 1302-1309. |
27. | Olsson KM, Olle S, Fuge J, et al. CXCL13 in idiopathic pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension. Respir Res, 2016, 17: 21. |
28. | van Bon L, Affandi AJ, Broen J, et al. Proteome-wide analysis and CXCL4 as a biomarker in systemic sclerosis. N Engl J Med, 2014, 370(5): 433-443. |
29. | Yang T, Li ZN, Chen G, et al. Increased levels of plasma CXC-Chemokine Ligand 10, 12 and 16 are associated with right ventricular function in patients with idiopathic pulmonary arterial hypertension. Heart Lung, 2014, 43(4): 322-327. |
30. | Luster AD, Ravetch JV. Biochemical characterization of a gamma interferon-inducible cytokine (IP-10). J Exp Med, 1987, 166(4): 1084-1097. |
31. | Lacalle RA, Blanco R, Carmona-Rodríguez L, et al. Chemokine receptor signaling and the hallmarks of cancer. Int Rev Cell Mol Biol, 2017, 331: 181-244. |
32. | Ding Q, Lu P, Xia Y, et al. CXCL9: evidence and contradictions for its role in tumor progression. Cancer Med, 2016, 5(11): 3246-3259. |
33. | Van Raemdonck K, Van den Steen PE, Liekens S, et al. CXCR3 ligands in disease and therapy. Cytokine Growth Factor Rev, 2015, 26(3): 311-327. |
34. | Bachelerie F, Ben-Baruch A, Burkhardt AM, et al. International Union of Basic and Clinical Pharmacology. [corrected]. LXXXIX. Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors. Pharmacol Rev, 2014, 66(1): 1-79. |
35. | Zohar Y, Wildbaum G, Novak R, et al. CXCL11-dependent induction of FOXP3-negative regulatory T cells suppresses autoimmune encephalomyelitis. J Clin Invest, 2014, 124(5): 2009-2022. |
36. | George PM, Oliver E, Dorfmuller P, et al. Evidence for the involvement of type I interferon in pulmonary arterial hypertension. Circ Res, 2014, 114(4): 677-688. |
37. | Badiger R, Mitchell JA, Gashaw H, et al. Effect of different interferonα2 preparations on IP10 and ET-1 release from human lung cells. PLoS One, 2012, 7(10): e46779. |
38. | Costa J, Zhu Y, Cox T, et al. Inflammatory response of pulmonary artery smooth muscle cells exposed to oxidative and biophysical stress. Inflammation, 2018, 41(4): 1250-1258. |
39. | Farkas D, Thompson AAR, Bhagwani AR, et al. Toll-like receptor 3 is a therapeutic target for pulmonary hypertension. Am J Respir Crit Care Med, 2019, 199(2): 199-210. |
40. | Ross DJ, Strieter RM, Fishbein MC, et al. Type I immune response cytokine-chemokine cascade is associated with pulmonary arterial hypertension. J Heart Lung Transplant, 2012, 31(8): 865-873. |
41. | Koudstaal T, van Uden D, van Hulst JAC, et al. Plasma markers in pulmonary hypertension subgroups correlate with patient survival. Respir Res, 2021, 22(1): 137. |
42. | Dong H, Li X, Cai M, et al. Integrated bioinformatic analysis reveals the underlying molecular mechanism of and potential drugs for pulmonary arterial hypertension. Aging (Albany NY), 2021, 13(10): 14234-14257. |
43. | Boucly A, Tu L, Guignabert C, et al. Cytokines as prognostic biomarkers in pulmonary arterial hypertension. Eur Respir J, 2023, 61(3): 2201232. |
44. | Cunningham CM, Li M, Ruffenach G, et al. Y-chromosome gene, Uty, protects against pulmonary hypertension by reducing proinflammatory chemokines. Am J Respir Crit Care Med, 2022, 206(2): 186-196. |
45. | Heresi GA, Aytekin M, Newman J, et al. CXC-chemokine ligand 10 in idiopathic pulmonary arterial hypertension: marker of improved survival. Lung, 2010, 188(3): 191-197. |
46. | Masri FA, Anand-Apte B, Vasanji A, et al. Definitive evidence of fundamental and inherent alteration in the phenotype of primary pulmonary hypertension endothelial cells in angiogenesis. Chest, 2005, 128(6 Suppl): 571s. |
47. | Darakhshan S, Hassanshahi G, Mofidifar Z, et al. CXCL9/CXCL10 angiostasis CXC-chemokines in parallel with the CXCL12 as an angiogenesis CXC-chemokine are variously expressed in pre-eclamptic-women and their neonates. Pregnancy Hypertens, 2019, 17: 36-42. |
48. | Strieter RM, Burdick MD, Gomperts BN, et al. CXC chemokines in angiogenesis. Cytokine Growth Factor Rev, 2005, 16(6): 593-609. |
49. | Bodnar RJ, Yates CC, Wells A. IP-10 blocks vascular endothelial growth factor-induced endothelial cell motility and tube formation via inhibition of calpain. Circ Res, 2006, 98(5): 617-625. |
50. | Huynh RH, Saggar R, Li N, et al. Elevated baseline concentrations of Cxcl-9 and-10 are associated with irreversible vascular remodeling of the pulmonary circulation in portopulmonary hypertension. American Thoracic Society, 2017, A4230-A4230. |
51. | Hirsch K, Nolley S, Ralph DD, et al. Circulating markers of inflammation and angiogenesis and clinical outcomes across subtypes of pulmonary arterial hypertension. J Heart Lung Transplant, 2023, 42(2): 173-182. |
52. | Evans CE, Cober ND, Dai Z, et al. Endothelial cells in the pathogenesis of pulmonary arterial hypertension. Eur Respir J, 2021, 58(3): 2003957. |
53. | Kurakula K, Smolders V, Tura-Ceide O, et al. Endothelial dysfunction in pulmonary hypertension: cause or consequence? Biomedicines, 2021, 9(1): 57. |
- 1. Humbert M, Morrell NW, Archer SL, et al. Cellular and molecular pathobiology of pulmonary arterial hypertension. J Am Coll Cardiol, 2004, 43(12 Suppl S): 13s-24s.
- 2. Boucly A, Savale L, Jaïs X, et al. Association between initial treatment strategy and long-term survival in pulmonary arterial hypertension. Am J Respir Crit Care Med, 2021, 204(7): 842-854.
- 3. Sitbon O, Humbert M, Jaïs X, et al. Long-term response to calcium channel blockers in idiopathic pulmonary arterial hypertension. Circulation, 2005, 111(23): 3105-3111.
- 4. Montani D, Chaumais MC, Guignabert C, et al. Targeted therapies in pulmonary arterial hypertension. Pharmacol Ther, 2014, 141(2): 172-191.
- 5. Humbert M, Lau EM, Montani D, et al. Advances in therapeutic interventions for patients with pulmonary arterial hypertension. Circulation, 2014, 130(24): 2189-2208.
- 6. Farber HW, Miller DP, Poms AD, et al. Five-year outcomes of patients enrolled in the REVEAL Registry. Chest, 2015, 148(4): 1043-1954.
- 7. Perros F, Dorfmüller P, Souza R, et al. Fractalkine-induced smooth muscle cell proliferation in pulmonary hypertension. Eur Respir J, 2007, 29(5): 937-943.
- 8. Hassoun PM, Mouthon L, Barberà JA, et al. Inflammation, growth factors, and pulmonary vascular remodeling. J Am Coll Cardiol, 2009, 54(1 Suppl): S10-S19.
- 9. Tuder RM, Groves B, Badesch DB, et al. Exuberant endothelial cell growth and elements of inflammation are present in plexiform lesions of pulmonary hypertension. Am J Pathol, 1994, 144(2): 275-285.
- 10. Dorfmüller P, Humbert M, Perros F, et al. Fibrous remodeling of the pulmonary venous system in pulmonary arterial hypertension associated with connective tissue diseases. Hum Pathol, 2007, 38(6): 893-902.
- 11. El Chami H, Hassoun PM. Immune and inflammatory mechanisms in pulmonary arterial hypertension. Prog Cardiovasc Dis, 2012, 55(2): 218-228.
- 12. Li C, Liu P, Song R, et al. Immune cells and autoantibodies in pulmonary arterial hypertension. Acta Biochim Biophys Sin (Shanghai), 2017, 49(12): 1047-1057.
- 13. Zlotnik A, Yoshie O. Chemokines: a new classification system and their role in immunity. Immunity, 2000, 12(2): 121-127.
- 14. Hughes CE, Nibbs RJB. A guide to chemokines and their receptors. Febs J, 2018, 285(16): 2944-2971.
- 15. Romagnani P, Lasagni L, Annunziato F, et al. CXC chemokines: the regulatory link between inflammation and angiogenesis. Trends Immunol, 2004, 25(4): 201-209.
- 16. Lasagni L, Francalanci M, Annunziato F, et al. An alternatively spliced variant of CXCR3 mediates the inhibition of endothelial cell growth induced by IP-10, Mig, and I-TAC, and acts as functional receptor for platelet factor 4. J Exp Med, 2003, 197(11): 1537-1549.
- 17. Wu T, Yang W, Sun A, et al. The role of CXC chemokines in cancer progression. Cancers (Basel), 2022, 15(1): 167.
- 18. Ridiandries A, Tan JT, Bursill CA. The role of CC-Chemokines in the regulation of angiogenesis. Int J Mol Sci, 2016, 17(11): 1856.
- 19. Komolafe K, Pacurari M. CXC Chemokines in the pathogenesis of pulmonary disease and pharmacological relevance. Int J Inflam, 2022, 2022: 4558159.
- 20. 杨罡, 赵峻, 张云辉. CXC型趋化因子及其受体轴在慢性阻塞性肺疾病中的研究进展. 中国呼吸与危重监护杂志, 2021, 20(10): 748-752.
- 21. Wu K, Yu S, Liu Q, et al. The clinical significance of CXCL5 in non-small cell lung cancer. Onco Targets Ther, 2017, 10: 5561-5573.
- 22. Zhou C, Gao Y, Ding P, et al. The role of CXCL family members in different diseases. Cell Death Discov, 2023, 9(1): 212.
- 23. White GE, Iqbal AJ, Greaves DR. CC chemokine receptors and chronic inflammation--therapeutic opportunities and pharmacological challenges. Pharmacol Rev, 2013, 65(1): 47-89.
- 24. Sanchez O, Marcos E, Perros F, et al. Role of endothelium-derived CC chemokine ligand 2 in idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med, 2007, 176(10): 1041-1047.
- 25. Mamazhakypov A, Viswanathan G, Lawrie A, et al. The role of chemokines and chemokine receptors in pulmonary arterial hypertension. Br J Pharmacol, 2021, 178(1): 72-89.
- 26. Li Z, Jiang J, Gao S. Potential of C-X-C motif chemokine ligand 1/8/10/12 as diagnostic and prognostic biomarkers in idiopathic pulmonary arterial hypertension. Clin Respir J, 2021, 15(12): 1302-1309.
- 27. Olsson KM, Olle S, Fuge J, et al. CXCL13 in idiopathic pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension. Respir Res, 2016, 17: 21.
- 28. van Bon L, Affandi AJ, Broen J, et al. Proteome-wide analysis and CXCL4 as a biomarker in systemic sclerosis. N Engl J Med, 2014, 370(5): 433-443.
- 29. Yang T, Li ZN, Chen G, et al. Increased levels of plasma CXC-Chemokine Ligand 10, 12 and 16 are associated with right ventricular function in patients with idiopathic pulmonary arterial hypertension. Heart Lung, 2014, 43(4): 322-327.
- 30. Luster AD, Ravetch JV. Biochemical characterization of a gamma interferon-inducible cytokine (IP-10). J Exp Med, 1987, 166(4): 1084-1097.
- 31. Lacalle RA, Blanco R, Carmona-Rodríguez L, et al. Chemokine receptor signaling and the hallmarks of cancer. Int Rev Cell Mol Biol, 2017, 331: 181-244.
- 32. Ding Q, Lu P, Xia Y, et al. CXCL9: evidence and contradictions for its role in tumor progression. Cancer Med, 2016, 5(11): 3246-3259.
- 33. Van Raemdonck K, Van den Steen PE, Liekens S, et al. CXCR3 ligands in disease and therapy. Cytokine Growth Factor Rev, 2015, 26(3): 311-327.
- 34. Bachelerie F, Ben-Baruch A, Burkhardt AM, et al. International Union of Basic and Clinical Pharmacology. [corrected]. LXXXIX. Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors. Pharmacol Rev, 2014, 66(1): 1-79.
- 35. Zohar Y, Wildbaum G, Novak R, et al. CXCL11-dependent induction of FOXP3-negative regulatory T cells suppresses autoimmune encephalomyelitis. J Clin Invest, 2014, 124(5): 2009-2022.
- 36. George PM, Oliver E, Dorfmuller P, et al. Evidence for the involvement of type I interferon in pulmonary arterial hypertension. Circ Res, 2014, 114(4): 677-688.
- 37. Badiger R, Mitchell JA, Gashaw H, et al. Effect of different interferonα2 preparations on IP10 and ET-1 release from human lung cells. PLoS One, 2012, 7(10): e46779.
- 38. Costa J, Zhu Y, Cox T, et al. Inflammatory response of pulmonary artery smooth muscle cells exposed to oxidative and biophysical stress. Inflammation, 2018, 41(4): 1250-1258.
- 39. Farkas D, Thompson AAR, Bhagwani AR, et al. Toll-like receptor 3 is a therapeutic target for pulmonary hypertension. Am J Respir Crit Care Med, 2019, 199(2): 199-210.
- 40. Ross DJ, Strieter RM, Fishbein MC, et al. Type I immune response cytokine-chemokine cascade is associated with pulmonary arterial hypertension. J Heart Lung Transplant, 2012, 31(8): 865-873.
- 41. Koudstaal T, van Uden D, van Hulst JAC, et al. Plasma markers in pulmonary hypertension subgroups correlate with patient survival. Respir Res, 2021, 22(1): 137.
- 42. Dong H, Li X, Cai M, et al. Integrated bioinformatic analysis reveals the underlying molecular mechanism of and potential drugs for pulmonary arterial hypertension. Aging (Albany NY), 2021, 13(10): 14234-14257.
- 43. Boucly A, Tu L, Guignabert C, et al. Cytokines as prognostic biomarkers in pulmonary arterial hypertension. Eur Respir J, 2023, 61(3): 2201232.
- 44. Cunningham CM, Li M, Ruffenach G, et al. Y-chromosome gene, Uty, protects against pulmonary hypertension by reducing proinflammatory chemokines. Am J Respir Crit Care Med, 2022, 206(2): 186-196.
- 45. Heresi GA, Aytekin M, Newman J, et al. CXC-chemokine ligand 10 in idiopathic pulmonary arterial hypertension: marker of improved survival. Lung, 2010, 188(3): 191-197.
- 46. Masri FA, Anand-Apte B, Vasanji A, et al. Definitive evidence of fundamental and inherent alteration in the phenotype of primary pulmonary hypertension endothelial cells in angiogenesis. Chest, 2005, 128(6 Suppl): 571s.
- 47. Darakhshan S, Hassanshahi G, Mofidifar Z, et al. CXCL9/CXCL10 angiostasis CXC-chemokines in parallel with the CXCL12 as an angiogenesis CXC-chemokine are variously expressed in pre-eclamptic-women and their neonates. Pregnancy Hypertens, 2019, 17: 36-42.
- 48. Strieter RM, Burdick MD, Gomperts BN, et al. CXC chemokines in angiogenesis. Cytokine Growth Factor Rev, 2005, 16(6): 593-609.
- 49. Bodnar RJ, Yates CC, Wells A. IP-10 blocks vascular endothelial growth factor-induced endothelial cell motility and tube formation via inhibition of calpain. Circ Res, 2006, 98(5): 617-625.
- 50. Huynh RH, Saggar R, Li N, et al. Elevated baseline concentrations of Cxcl-9 and-10 are associated with irreversible vascular remodeling of the pulmonary circulation in portopulmonary hypertension. American Thoracic Society, 2017, A4230-A4230.
- 51. Hirsch K, Nolley S, Ralph DD, et al. Circulating markers of inflammation and angiogenesis and clinical outcomes across subtypes of pulmonary arterial hypertension. J Heart Lung Transplant, 2023, 42(2): 173-182.
- 52. Evans CE, Cober ND, Dai Z, et al. Endothelial cells in the pathogenesis of pulmonary arterial hypertension. Eur Respir J, 2021, 58(3): 2003957.
- 53. Kurakula K, Smolders V, Tura-Ceide O, et al. Endothelial dysfunction in pulmonary hypertension: cause or consequence? Biomedicines, 2021, 9(1): 57.
-
Previous Article
间质性肺疾病合并慢性阻塞性肺疾病的研究进展 -
Next Article
阻塞性睡眠呼吸暂停诱导心脏重塑的研究进展