1. |
Raghu G, Collard HR, Egan JJ, et al. An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am J Respir Crit Care Med, 2011, 183(6): 788-824.
|
2. |
Nathan SD, Shlobin OA, Weir N, et al. Long-term course and prognosis of idiopathic pulmonary fibrosis in the new millennium. Chest, 2011, 140(1): 221-229.
|
3. |
Noble PW, Barkauskas CE, Jiang D. Pulmonary fibrosis: patterns and perpetrators. J Clin Invest, 2012, 122(8): 2756-2762.
|
4. |
Gardner TW, Antonetti DA, Barber AJ, et al. Diabetic retinopathy: more than meets the eye. Surv Ophthalmol, 2002, 47(Suppl 2): 253-262.
|
5. |
Szuszczewicz-Garcia MM, Davidson JA. Cardiovascular disease in diabetes mellitus: risk factors and medical therapy. Endocrinol Metab Clin North Am, 2014, 43(1): 25-40.
|
6. |
Sherbini N, Feteih MN, Wali SO, et al. Idiopathic pulmonary fibrosis in Saudi Arabia: demographic, clinical, and survival data from two tertiary care hospitals. Ann Thorac Med, 2014, 9(3): 168-172.
|
7. |
Luppi F, Kalluri M, Faverio P, et al. Idiopathic pulmonary fibrosis beyond the lung: understanding disease mechanisms to improve diagnosis and management. Respir Res, 2021, 22(1): 109.
|
8. |
Pedraza-Serrano F, Jimenez-Garcia R, Lopez-de-Andres A, et al. Characteristics and outcomes of patients hospitalized with interstitial lung diseases in Spain, 2014 to 2015. Medicine (Baltimore), 2019, 98(21): e15779.
|
9. |
Kim YJ, Park JW, Kyung SY, et al. Clinical characteristics of idiopathic pulmonary fibrosis patients with diabetes mellitus: the national survey in Korea from 2003 to 2007. J Korean Med Sci, 2012, 27(7): 756-760.
|
10. |
Garcia-Sancho FM, Carrillo G, Perez-Padilla R, et al. Risk factors for idiopathic pulmonary fibrosis in a Mexican population. A case-control study. Respir Med, 2010, 104(2): 305-309.
|
11. |
Gribbin J, Hubbard R, Smith C. Role of diabetes mellitus and gastro-oesophageal reflux in the aetiology of idiopathic pulmonary fibrosis. Respir Med, 2009, 103(6): 927-931.
|
12. |
Ehrlich SF, Quesenberry CP Jr, van den Eeden SK, et al. Patients diagnosed with diabetes are at increased risk for asthma, chronic obstructive pulmonary disease, pulmonary fibrosis, and pneumonia but not lung cancer. Diabetes Care, 2010, 33(1): 55-60.
|
13. |
Raghu G, Freudenberger TD, Yang S, et al. High prevalence of abnormal acid gastro-oesophageal reflux in idiopathic pulmonary fibrosis. Eur Respir J, 2006, 27(1): 136-142.
|
14. |
Bai L, Zhang L, Pan T, et al. Idiopathic pulmonary fibrosis and diabetes mellitus: a meta-analysis and systematic review. Respir Res, 2021, 8(22(1)): 175.
|
15. |
Matsubara T, Hara F. The pulmonary function and histopathological studies of the lung in diabetes mellitus. Nihon Ika Daigaku Zasshi, 1991, 58(5): 528-536.
|
16. |
Weynand B, Jonckheere A, Frans A, et al. Diabetes mellitus induces a thickening of the pulmonary basal lamina. Respiration, 1999, 66(1): 14-19.
|
17. |
Ali MO. Pulmonary complications in diabetes mellitus. Mymensingh Med J, 2014, 23(3): 603-605.
|
18. |
Klein OL, Kalhan R, Williams MV, et al. Lung spirometry parameters and diffusion capacity are decreased in patients with type 2 diabetes. Diabet Med, 2012, 29(2): 212-219.
|
19. |
Raghu G, Remy-Jardin M, Myers JL, et al. Diagnosis of idiopathic pulmonary fibrosis. An official ATS/ERS/JRS/ALAT clinical practice guideline. Am J Respir Crit Care Med, 2018, 198(5): 44-e68.
|
20. |
Davis AP, Murphy CG, Johnson R, et al. The comparative toxicogenomics database: update 2013. Nucleic Acids Res, 2013, 41(Database issue): 1104-1114.
|
21. |
Stelzer G, Rosen N, Plaschkes I, et al. The GeneCards suite: from gene data mining to disease genome sequence analyses. Curr Protoc Bioinformatics, 2016, 54: 1-30.
|
22. |
Piñero J, Queralt-Rosinach N, Bravo A, et al. DisGeNET: a discovery platform for the dynamical exploration of human diseases and their genes. Database (Oxford), 2015, 2015: 28.
|
23. |
Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics, 2008, 9: 559.
|
24. |
Barrett T, Wilhite SE, Ledoux P, et al. NCBI GEO: archive for functional genomics data sets--update. Nucleic Acids Res, 2013, 41(Database issue): 991-995.
|
25. |
Zhou Y, Zhou B, Pache L, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun, 2019, 10(1): 1523.
|
26. |
Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res, 2000, 28(1): 27-30.
|
27. |
Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res, 2003, 13(11): 2498-2504.
|
28. |
Lim LP, Lau NC, Garrett-Engele P, et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature, 2005, 433(7027): 769-773.
|
29. |
Li Y, Qiu C, Tu J, et al. HMDD v2.0: a database for experimentally supported human microRNA and disease associations. Nucleic Acids Res, 2014, 42(Database issue): 1070-1074.
|
30. |
Chou CH, Shrestha S, Yang CD, et al. Mirtarbase update 2018: a resource for experimentally validated microRNA-target interactions. Nucleic Acids Res, 2018, 46(D1): 296-302.
|
31. |
de Lauretis A, Veeraraghavan S, Renzoni E. Review series: aspects of interstitial lung disease: connective tissue disease-associated interstitial lung disease: how does it differ from IPF? How should the clinical approach differ? Chron Respir Dis, 2011, 8(1): 53-82.
|
32. |
Muri J, Durcova B, Slivka R, et al. Idiopathic pulmonary fibrosis: review of current knowledge. Physiol Res, 2024, 73(4): 487-497.
|
33. |
Wang D, Ma Y, Tong X, et al. Diabetes mellitus contributes to idiopathic pulmonary fibrosis: a review from clinical appearance to possible pathogenesis. Front Public Health, 2020, 8: 196.
|
34. |
Schuyler M R, Nieuwoehner D E, Inkley S R, et al. Abnormal lung elasticity in juvenile diabetes mellitus. Am Rev Respir Dis, 1976, 113(1): 37-41.
|
35. |
Pardo A, Selman M. The interplay of the genetic architecture, aging, and environmental factors in the pathogenesis of idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol, 2021, 64(2): 163-172.
|
36. |
Vracko R. Basal lamina scaffold-anatomy and significance for maintenance of orderly tissue structure. Am J Pathol, 1974, 77(2): 314-346.
|
37. |
Xu W, Yang Z, Lu N. A new role for the pi3k/akt signaling pathway in the epithelial-mesenchymal transition. Cell Adh Migr, 2015, 9(4): 317-324.
|
38. |
Nho R S, Polunovsky V. Translational control of the fibroblast-extracellular matrix association: an application to pulmonary fibrosis. Translation (Austin), 2013, 1(1): e23934.
|
39. |
Mercer P F, Woodcock H V, Eley J D, et al. Exploration of a potent pi3 kinase/mtor inhibitor as a novel anti-fibrotic agent in ipf. Thorax, 2016, 71(8): 701-711.
|
40. |
Graupera M, Potente M. Regulation of angiogenesis by pi3k signaling networks. Exp Cell Res, 2013, 319(9): 1348-1355.
|
41. |
Yang J, Xue Q, Miao L, et al. Pulmonary fibrosis: a possible diabetic complication. Diabetes Metab Res Rev, 2011, 27(4): 311-317.
|
42. |
Sanchez E, Lecube A, Betriu A, et al. Subcutaneous advanced glycation end-products and lung function according to glucose abnormalities: the ilervas project. Diabetes Metab, 2019, 45(6): 595-598.
|
43. |
McKeever T M, Weston P J, Hubbard R, et al. Lung function and glucose metabolism: an analysis of data from the third national health and nutrition examination survey. Am J Epidemiol, 2005, 161(6): 546-556.
|
44. |
Popov D, Hasu M, Costache G, et al. Capillary and aortic endothelia interact in situ with nonenzymatically glycated albumin and develop specific alterations in early experimental diabetes. Acta Diabetol, 1997, 34(4): 285-293.
|
45. |
Usuki J, Enomoto T, Azuma A, et al. Influence of hyperglycemia to the severity of pulmonary fibrosis. Chest, 2001, 120(1 Suppl): 71.
|
46. |
Dancer R C, Wood A M, Thickett D R. Metalloproteinases in idiopathic pulmonary fibrosis. Eur Respir J, 2011, 38(6): 1461-1467.
|
47. |
Kurnia I, Rauf S, Hatta M, et al. Molecular patho-mechanisms of cervical cancer (mmp1). Ann Med Surg (Lond), 2022, 77: 103415.
|
48. |
Abu E A, Alam K, Nawaz M I, et al. Upregulation of thrombin/matrix metalloproteinase-1/protease-activated receptor-1 chain in proliferative diabetic retinopathy. Curr Eye Res, 2016, 41(12): 1590-1600.
|
49. |
Stoynev N, Dimova I, Rukova B, et al. Gene expression in peripheral blood of patients with hypertension and patients with type 2 diabetes. J Cardiovasc Med (Hagerstown), 2014, 15(9): 702-709.
|
50. |
Spranger J, Kroke A, Mohlig M, et al. Inflammatory cytokines and the risk to develop type 2 diabetes: results of the prospective population-based european prospective investigation into cancer and nutrition (epic)-potsdam study. Diabetes, 2003, 52(3): 812-817.
|
51. |
Mikkelsen R R, Hundahl M P, Torp C K, et al. Immunomodulatory and immunosuppressive therapies in cardiovascular disease and type 2 diabetes mellitus: a bedside-to-bench approach. Eur J Pharmacol, 2022, 925: 174998.
|
52. |
Tarantal A F, Chen H, Shi T T, et al. Overexpression of transforming growth factor-beta1 in fetal monkey lung results in prenatal pulmonary fibrosis. Eur Respir J, 2010, 36(4): 907-914.
|
53. |
Fernandez I E, Eickelberg O. The impact of tgf-beta on lung fibrosis: from targeting to biomarkers. Proc Am Thorac Soc, 2012, 9(3): 111-116.
|
54. |
Sun G, Song H, Wu S. Mir-19a promotes vascular smooth muscle cell proliferation, migration and invasion through regulation of ras homolog family member B. Int J Mol Med, 2019, 44(6): 1991-2002.
|
55. |
Trivedi T, Franek B, Green S, et al. Osteopontin alleles are associated with clinical characteristics in systemic lupus erythematosus. Biomed Biotechnol, 2011, 2011: 802581.
|
56. |
Lamort A, Giopanou I, Psallidas I, et al. Stathopoulos G. T. Osteopontin as a link between inflammation and cancer: the thorax in the spotlight. Cells, 2019, 8(8): 815.
|
57. |
Gui X, Qiu X, Xie M, et al. Prognostic value of serum osteopontin in acute exacerbation of idiopathic pulmonary fibrosis. Biomed Res Int, 2020, 2020: 3424208.
|
58. |
Ahlqvist E, Osmark P, Kuulasmaa T, et al. Link between GIP and osteopontin in adipose tissue and insulin resistance. Diabetes, 2013, 62(6): 2088-94.
|
59. |
Ji J, Zheng S, Liu Y, et al. Increased expression of OPN contributes to idiopathic pulmonary fibrosis and indicates a poor prognosis. Transl Med, 2023, 21(1): 640.
|
60. |
Belenchia AM, Gavini MP, Toedebusch RG, et al. Comparison of cardiac mirna transcriptomes induced by diabetes and rapamycin treatment and identification of a rapamycin-associated cardiac microrna signature. Oxid Med Cell Longev, 2018, 2018: 8364608.
|
61. |
Fan L, Yu X, Huang Z, et al. Response to: comment on "analysis of microarray-identified genes and micrornas associated with idiopathic pulmonary fibrosis". Mediators Inflamm, 2019, 2019: 3192089.
|
62. |
Sun Q, Liu L, Wang H, et al. Constitutive high expression of protein arginine methyltransferase 1 in asthmatic airway smooth muscle cells is caused by reduced microrna-19a expression and leads to enhanced remodeling. J Allergy Clin Immunol, 2017, 140(2): 510-524.
|