- 1. Center for Evidence Based Chinese Medicine, Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China;
- 2. Department of Clinical Epidemiology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, P. R. China;
Citation: JING Chengyang, FENG Lin, LI Jiachen, LIANG Lirong, LIAO Xing. Methodological quality evaluation on clinical prediction models of traditional Chinese medicine: a systematic review. Chinese Journal of Evidence-Based Medicine, 2024, 24(3): 312-321. doi: 10.7507/1672-2531.202307071 Copy
Copyright © the editorial department of Chinese Journal of Evidence-Based Medicine of West China Medical Publisher. All rights reserved
1. | Moons KG, Royston P, Vergouwe Y, et al. Prognosis and prognostic research: what, why, and how. BMJ, 2009, 338: b375. |
2. | Bouwmeester W, Zuithoff NP, Mallett S, et al. Reporting and methods in clinical prediction research: a systematic review. PLoS Med, 2012, 9(5): 1-12. |
3. | Steyerberg EW, Moons KG, van der Windt DA, et al. Prognosis research strategy (PROGRESS) 3: prognostic model research. PLoS Med, 2013, 10(2): e1001381. |
4. | Steyerberg EW, Vergouwe Y. Towards better clinical prediction models: seven steps for development and an ABCD for validation. Eur Heart J, 2014, 35(29): 1925-1931. |
5. | Wolff RF, Moons KGM, Riley RD, et al. PROBAST: a tool to assess the risk of bias and applicability of prediction model studies. Ann Intern Med, 2019, 170(1): 51-58. |
6. | Moons KGM, Wolff RF, Riley RD, et al. PROBAST: a tool to assess risk of bias and applicability of prediction model studies: explanation and elaboration. Ann Intern Med, 2019, 170(1): 1-33. |
7. | Andaur Navarro CL, Damen JAA, Takada T, et al. Risk of bias in studies on prediction models developed using supervised machine learning techniques: systematic review. BMJ, 2021, 375: n2281. |
8. | Chu H, Moon S, Park J, et al. The use of artificial intelligence in complementary and alternative medicine: a systematic scoping review. Front Pharmacol, 2022, 13: 826044. |
9. | Moons KG, de Groot JA, Bouwmeester W, et al. Critical appraisal and data extraction for systematic reviews of prediction modelling studies: the CHARMS checklist. PLoS Med, 2014, 11(10): e1001744. |
10. | 张馨心, 吕晓东, 庞立健, 等. 基于机器学习的特发性肺纤维化气阴两虚兼血瘀证诊断模型研究. 辽宁中医药大学学报, 2023, 25(2): 191-196. |
11. | 姚帅君, 闫敬来, 杜彩凤, 等. 基于集成学习构建围绝经期综合征中医智能诊断模型. 中医杂志, 2023, 64(6): 572-580. |
12. | 孙聪, 戴国华, 管慧, 等. 基于决策树算法的慢性心力衰竭患者中西医预后模型构建及验证. 中国中医基础医学杂志, 2023, 29(1): 120-126. |
13. | 黄少鹏, 姚衍竹. 不同中医体质联合肺功能参数的小儿咳嗽变异性哮喘的临床预测. 四川中医, 2023, 41(2): 86-90. |
14. | 高明友, 潘赐明, 丁家雯. 胃癌患者的中医证素分布及与病情严重程度的相关性研究. 广州中医药大学学报, 2023, 40(4): 802-806. |
15. | 高静, 陈琼华, 何晓铭, 等. 基于中医证型的人工全膝关节置换术后慢性疼痛的危险因素探究及风险预测模型构建. 广州中医药大学学报, 2023, 40(3): 549-555. |
16. | 董兴鲁, 高颖, 唐璐, 等. 基于多元Logistic回归的缺血性中风病恢复期肾虚证证候诊断模型研究. 现代中医临床, 2023, 30(1): 26-30. |
17. | 陈玄, 叶云金, 陈娟, 等. 绝经后女性中医症候群骨质疏松风险预测工具构建. 中国骨质疏松杂志, 2023, 29(3): 356-360. |
18. | Liu X, Huang X, Zhao J, et al. Application of machine learning in Chinese medicine differentiation of dampness-heat pattern in patients with type 2 diabetes mellitus. Heliyon, 2023, 9(2): e13289. |
19. | 朱玲, 郑婉婷, 张竹绿, 等. 基于卷积神经网络的溃疡性结肠炎证候预测模型研究. 中国数字医学, 2022, 17(4): 49-55. |
20. | 张晓兰, 方桂珍, 杨丹华, 等. 中老年女性肾阳虚型压力性尿失禁风险预测模型的构建. 护理与康复, 2022, 21(7): 1-5. |
21. | 张梦楚, 赵倩倩, 解天骁, 等. 基于脉图参数构建原发性高血压患者伴左心室肥厚的风险预测列线图模型. 中国中医药信息杂志, 2022, 29(8): 116-122. |
22. | 杨继, 张垚, 高晟玮, 等. 预测高血压病患者合并慢性肾脏病风险的列线图模型构建. 天津中医药, 2022, 39(3): 295-302. |
23. | 夏庭伟, 李炜弘, 丁维俊, 等. 2型糖尿病并发肾病中西医多模态特征融合预测模型构建. 中华中医药杂志, 2022, 37(7): 4116-4120. |
24. | 王中瑞, 符宇, 赵瑞霞, 等. 糖尿病合并稳定型心绞痛患者发生主要不良心脑血管事件的中医预测模型构建及应用评估研究. 中国全科医学, 2022, 25(20): 2450-2456. |
25. | 王丽丹, 刘可可, 王永祥, 等. 中医体质类型与阿尔茨海默病关系的研究. 中华行为医学与脑科学杂志, 2022, 31(6): 541-547. |
26. | 田之魁, 张鑫海, 孙璇, 等. 基于舌象的糖尿病足风险预测模型的构建. 中医杂志, 2022, 63(19): 1840-1846. |
27. | 唐艳芳, 刘旭东, 吕萍, 等. 基于BP神经网络、随机森林和决策树建立早期慢性乙型病毒性肝炎肝硬化无创诊断模型. 重庆医学, 2022, 51(7): 1161-1166. |
28. | 任丽丽, 戴国华, 高武霖, 等. 基于Lasso-Cox回归评价中医药干预在慢性心力衰竭患者预后中的治疗价值. 中华中医药杂志, 2022, 37(10): 6000-6005. |
29. | 李军, 胡晓娟, 周昌乐, 等. 基于随机森林算法的糖尿病舌象特征分析和诊断模型研究. 中华中医药杂志, 2022, 37(3): 1639-1643. |
30. | 贾文, 尹莹, 余晗, 等. 基于决策树模型的中西结合诊疗模式下新型冠状病毒感染住院患者死亡风险因素分析. 亚太传统医药, 2022, 18(7): 68-74. |
31. | 洪敏萍, 周长玉, 卜阳阳, 等. 基于多参数MRI影像组学特征预测肉芽肿性乳腺炎中医证型的研究. 浙江中医药大学学报, 2022, 46(5): 483-489. |
32. | 樊佳赛, 杜艺菲, 许佳颖, 等. 基于中医证候和机器学习构建慢性心力衰竭中西医结合预后模型. 基础医学与临床, 2022, 42(8): 1169-1175. |
33. | 段绍杰, 刘尊敬, 陈佳良, 等. 成人非酒精性脂肪性肝病患者ALT升高的危险因素分析及预测模型建立. 海南医学院学报, 2022, 28(4): 263-268. |
34. | 崔伟锋, 林萍, 刘萧萧, 等. 基于机器学习的原发性高血压心血管风险预后模型. 中国老年学杂志, 2022, 42(15): 3625-3629. |
35. | 车前子, 王晶, 白卫国, 等. 基于LASSO回归的骨质疏松肾阳虚状态辨识模型研究. 中华中医药杂志, 2022, 37(10): 5928-5933. |
36. | Yang J, Chen L, Cai S, et al. Prediction of H-type hypertension based on pulse-taking and inquiry diagnosis. Biomed Signal Process Control, 2022, 75: 103723. |
37. | Wang W, Zeng W, Chen X, et al. Parameter study on characteristic pulse diagram of polycystic ovary syndrome based on logistic regression analysis. J Obstet Gynaecol, 2022, 42(8): 3712-3719. |
38. | Tang M, Gao L, He B, et al. Machine learning based prognostic model of Chinese medicine affecting the recurrence and metastasis of Ⅰ-Ⅲ stage colorectal cancer: a retrospective study in China. Front Oncol, 2022, 12: 1044344. |
39. | Luo B, Yang M, Han Z, et al. Establishment of a nomogram-based prognostic model (LASSO-COX Regression) for predicting progression-free survival of primary non-small cell lung cancer patients treated with adjuvant chinese herbal medicines therapy: a retrospective study of case series. Front Oncol, 2022, 12: 882278. |
40. | Huang Z, Miao J, Chen J, et al. A traditional Chinese medicine syndrome classification model based on cross-feature generation by convolution neural network: model development and validation. JMIR Med Inform, 2022, 10(4): e29290. |
41. | Filist S, Al-Kasasbeh RT, Shatalova O, et al. Biotechnical system based on fuzzy logic prediction for surgical risk classification using analysis of current-voltage characteristics of acupuncture points. J Integr Med, 2022, 20(3): 252-264. |
42. | Cheng B, Ma J, Chen X, et al. Objective study of the facial parameters of observations in patients with type 2 diabetes mellitus by machine learning. Ann Transl Med, 2022, 10(18): 960. |
43. | 朱兆鑫, 杨珊珊, 彭安杰, 等. 基于自适应矩估计的BP神经网络对中医痛经证型分类的研究. 世界科学技术-中医药现代化, 2021, 23(12): 4560-4568. |
44. | 周淑珍, 张燕媚, 何志仁, 等. 基于中医药治疗的糖尿病肾病风险预测模型构建与验证. 时珍国医国药, 2021, 32(6): 1505-1509. |
45. | 章轶立, 谭楠楠, 刘俊杰, 等. 基本证候视角下的慢性心力衰竭关联因素筛选及判别模型构建: 一项多中心横断面研究. 中华中医药杂志, 2021, 36(6): 3205-3208. |
46. | 叶桦, 何黎, 胡远樟, 等. 基于卷积神经网络的2型糖尿病证候分布演化规律研究. 时珍国医国药, 2021, 32(6): 1522-1524. |
47. | 杨敏, 王君, 牛文全, 等. 儿童偏矮身材的中医体质分布及风险预测模型构建. 安徽中医药大学学报, 2021, 40(6): 29-36. |
48. | 杨慧婷, 蒋金兰, 金林珍, 等. 针灸治疗中风恢复期临床预测模型的建立和分析. 中国针灸, 2021, 41(8): 855-860. |
49. | 熊梦欣, 曾明星, 周广文, 等. 亚急性甲状腺炎肝经郁热证量化诊断标准的初探. 中国中医急症, 2021, 30(9): 1527-1531. |
50. | 王志武, 刘春秋, 王静, 等. 放射性肺损伤肺癌病证结合预测模型的构建和验证. 中华中医药杂志, 2021, 36(9): 5556-5560. |
51. | 王钰涵, 段鹏喆, 张鑫, 等. 基于决策树和神经网络的高血压病危险因素研究. 世界科学技术-中医药现代化, 2021, 23(8): 2784-2794. |
52. | 孙千惠, 李婷婷, 王晓燕, 等. 肺脾两虚型支气管哮喘诊断预测模型研究. 中医药导报, 2021, 27(1): 79-81. |
53. | 刘超, 高嘉良, 董艳, 等. 基于BP神经网络的冠状动脉临界病变患者证候要素及其常见组合中医辨证诊断模型研究. 中国中医药信息杂志, 2021, 28(3): 104-110. |
54. | 李妍, 彭心怡, 孔燕妮, 等. 免疫检查点抑制剂疗效预测分析及结合中医证型的Nomogram图构建. 浙江中西医结合杂志, 2021, 31(8): 721-725. |
55. | 葛修芹, 张金山, 张忠诚. 类风湿性关节炎并间质性肺病的影响因素分析及其风险预测列线图模型构建研究. 实用心脑肺血管病杂志, 2021, 29(9): 53-58. |
56. | 曹云, 舒鑫, 张丹莉, 等. 急性缺血性脑卒中气虚证列线图预测模型的构建. 中华中医药杂志, 2021, 36(4): 1939-1944. |
57. | Zhao T, Yang X, Wan R, et al. Study of TCM syndrome identification modes for patients with type 2 diabetes mellitus based on data mining. Evid Based Complement Alternat Med, 2021, 2021: 5528550. |
58. | Xia SJ, Gao BZ, Wang SH, et al. Modeling of diagnosis for metabolic syndrome by integrating symptoms into physiochemical indexes. Biomed Pharmacother, 2021, 137: 111367. |
59. | Xi X, Fu Z, Liu T, et al. Establishment and verification of scoring system for colorectal adenoma recurrence. Risk Manag Healthc Policy, 2021, 14: 4545-4552. |
60. | Wu J, Hu R, Li M, et al. Diagnosis of sleep disorders in traditional Chinese medicine based on adaptive neuro-fuzzy inference system. Biomed Signal Process Control, 2021, 70: 102334. |
61. | Wang Y, Zhang R, Pi M, et al. Correlation between TCM syndromes and type 2 diabetic comorbidities based on fully connected neural network prediction model. Evid Based Complement Alternat Med, 2021, 2021: 6095476. |
62. | Shi YL, Liu JY, Hu XJ, et al. A new method for syndrome classification of non-small-cell lung cancer based on data of tongue and pulse with machine learning. Biomed Res Int, 2021, 2021: 1337558. |
63. | Li J, Yuan P, Hu X, et al. A tongue features fusion approach to predicting prediabetes and diabetes with machine learning. J Biomed Inform, 2021, 115: 103693. |
64. | Li J, Chen Q, Hu X, et al. Establishment of noninvasive diabetes risk prediction model based on tongue features and machine learning techniques. Int J Med Inform, 2021, 149: 104429. |
65. | Guan H, Dai GH, Gao WL, et al. A 5-year survival prediction model for chronic heart failure patients induced by coronary heart disease with traditional Chinese medicine intervention. Evid Based Complement Alternat Med, 2021, 2021: 4381256. |
66. | Ding L, Zhang XY, Wu DY, et al. Application of an extreme learning machine network with particle swarm optimization in syndrome classification of primary liver cancer. J Integr Med, 2021, 19(5): 395-407. |
67. | 张振, 田雪飞, 郜文辉, 等. 基于决策树及贝叶斯网络建立原发性肝癌肝郁脾虚证诊断模型研究. 中国中医药信息杂志, 2020, 27(9): 115-120. |
68. | 于李. 神经网络模型预测老年HBV相关原发性肝癌患者预后研究. 转化医学杂志, 2020, 9(5): 296-298, 307. |
69. | 王一苇, 倪寅, 纪超凡, 等. 基于疗效影响因素对加味清络饮治疗类风湿性关节炎临床预测模型与列线图绘制的初步探索. 中医药信息, 2020, 37(6): 82-87. |
70. | 刘超, 陈恒文, 刘兰椿, 等. 基于多种算法对冠心病不稳定型心绞痛肾虚血瘀证诊断模型的研究. 世界科学技术-中医药现代化, 2020, 22(11): 3839-3845. |
71. | 宫文浩, 兰天莹, 莫清莲, 等. 基于决策树和人工神经网络的小儿肺炎痰热闭肺证诊断模型研究. 世界科学技术-中医药现代化, 2020, 22(7): 2548-2555. |
72. | 丁亮, 章新友, 刘莉萍, 等. 基于深度神经网络的原发性肝癌证型诊断分类预测模型. 世界科学技术-中医药现代化, 2020, 22(12): 4185-4192. |
73. | 崔伟锋, 刘萧萧, 韩静旖, 等. 基于随机森林的原发性高血压心血管风险预后模型. 中国老年学杂志, 2020, 40(4): 814-816. |
74. | 曾雪元, 宫伟国, 胡云峰, 等. 基于决策树算法构建缺血性卒中复发的预测模型. 吉林中医药, 2020, 40(4): 437-440. |
75. | 安静, 彭继升, 魏玥, 等. 胃癌前病变寒热错杂证中医诊断模型的建立. 现代中医临床, 2020, 27(1): 12-15. |
76. | Zhao Y, Peng H, Wang S, et al. Clinical analysis of acute coronary syndrome patients with Qi-blood syndromes: establishment of a diagnostic prediction model for syndrome differentiation. Ann Palliat Med, 2020, 9(4): 2096-2110. |
77. | Ren Q, Zhou XW, He MY, et al. A quantitative diagnostic method for phlegm and blood stasis syndrome in coronary heart disease using tongue, face, and pulse indexes: an exploratory pilot study. J Altern Complement Med, 2020, 26(8): 729-737. |
78. | Liu Z, He H, Yan S, et al. End-to-end models to imitate traditional Chinese medicine syndrome differentiation in lung cancer diagnosis: model development and validation. JMIR Med Inform, 2020, 8(6): e17821. |
79. | 赵书颖, 张新雅, 李运伦. 基于决策树及神经网络的高血压病阴阳两虚证诊断模型的研究. 中华中医药学刊, 2019, 37(5): 1120-1123. |
80. | 章轶立, 魏戌, 聂佩芸, 等. 基于SMOTE算法和决策树的绝经后骨质疏松性骨折分类模型建构. 中国骨质疏松杂志, 2019, 25(1): 1-5. |
81. | 徐钰莹, 张文丽, 杨宇飞, 等. 晚期结直肠癌中医药干预治疗疗效预测模型的建立与应用. 世界科学技术-中医药现代化, 2019, 21(7): 1518-1524. |
82. | 舒鑫, 曹云, 黄幸, 等. 基于神经网络分析技术的急性缺血性卒中气虚证预测模型构建的研究. 环球中医药, 2019, 12(11): 1650-1655. |
83. | 付源峰, 林洁涛, 黄子菁, 等. 中西医结合治疗晚期非小细胞肺癌队列疗效预测模型的建立. 青岛大学学报(医学版), 2019, 55(6): 661-666. |
84. | 章轶立, 魏戌, 聂佩芸, 等. 基于GroupLasso的Logistic回归模型构建绝经后骨质疏松性骨折初发风险评估工具. 中国骨质疏松杂志, 2018, 24(8): 994-999. |
85. | 王萍, 史彬, 温艳东, 等. 胃癌前病变病证结合风险预测模型的构建研究. 中国中西医结合杂志, 2018, 38(7): 773-778. |
86. | 王娟, 赵慧辉, 陈建新, 等. 基于神经网络技术分析的慢性心力衰竭血瘀证诊断模型研究. 世界中医药, 2018, 13(9): 2122-2126. |
87. | 李静茹, 马建萍, 马秀兰, 等. Logistic回归联合ROC曲线评价中医症状对HIV感染者中医证型的预测价值. 中华中医药杂志, 2018, 33(12): 5627-5629. |
88. | Luo ZY, Cui J, Hu XJ, et al. A study of machine-learning classifiers for hypertension based on radial pulse wave. Biomed Res Int, 2018, 2018: 2964816. |
89. | 卓缘圆, 于海波, 杨卓欣, 等. 不同中医证型复发脑梗死的眼底血管特征分析及预测模型的建立. 辽宁中医杂志, 2017, 44(5): 909-913. |
90. | 张赟华, 王益斐, 李国法. 中医症状评分在慢性心功能不全急性加重期患者预后评价中的应用价值及死亡概率模型的建立. 中国中西医结合急救杂志, 2017, 24(5): 469-472. |
91. | 许明东, 马晓聪, 温宗良, 等. 支持向量机在高血压病中医证候诊断中的应用. 中华中医药杂志, 2017, 32(6): 2497-2500. |
92. | 吕航, 杨秋莉, 杜渐, 等. 基于决策树预测糖尿病合并冠心病患病风险的中医人格体质特征研究. 南京中医药大学学报, 2017, 33(6): 639-642. |
93. | 吕航, 王昊, 刘媛, 等. 基于决策树的中医人格体质对2型糖尿病患者伴发非酒精性脂肪肝病风险的预测研究. 中国中医基础医学杂志, 2017, 23(9): 1257-1259. |
94. | 吕航, 杜渐, 刘媛, 等. 多层感知器模型在中医人格、体质预测糖尿病性冠心病患病风险中的应用研究. 中国中医药信息杂志, 2017, 24(12): 88-91. |
95. | 黄鹂, 梁咏竹, 林立宇, 等. 糖尿病不同阶段人群经络值特点及预测模型的构建. 广东医学, 2017, 38(17): 2707-2710. |
96. | Zhao Y, Kang H, Peng JH, et al. Key symptoms selection for two major syndromes diagnosis of Chinese medicine in chronic hepatitis B. Chin J Integr Med, 2017, 23(4): 253-260. |
97. | Zhang J, Xu J, Hu X, et al. Diagnostic method of diabetes based on support vector machine and tongue images. Biomed Res Int, 2017, 2017: 7961494. |
98. | 姚岚, 方芳. 中西医联合构建ACS患者发生心脏事件的预测模型. 世界中西医结合杂志, 2016, 11(10): 1420-1424,1443. |
99. | 许明东, 马晓聪, 岳桂华, 等. 基于支持向量机的高血压中医证候与血脂、血尿酸、空腹血糖关系的研究. 时珍国医国药, 2016, 27(12): 3063-3065. |
100. | 徐玮斐, 顾巍杰, 刘国萍, 等. 基于随机森林和多标记学习算法的慢性胃炎实证特征选择和证候分类识别研究. 中国中医药信息杂志, 2016, 23(8): 18-23. |
101. | 王志武, 王静怡, 胡建, 等. 基于中西医多模态信息的放射性肺损伤早期预测模型. 中国煤炭工业医学杂志, 2016, 19(3): 413-417. |
102. | 唐继云, 李东芳, 侯芳芳, 等. 应用Logistic回归和ROC曲线探讨胃癌脾胃气虚证中医诊断模型. 中医药导报, 2016, 22(12): 30-34. |
103. | 郭丽颖, 袁晨翼, 贾建伟, 等. HBV-ACLF患者“胃气”相关预后模型的建立. 中华肿瘤防治杂志, 2016, 23(S1): 143-144, 152. |
104. | Xu J, Xu ZX, Lu P, et al. Classifying syndromes in Chinese medicine using multi-label learning algorithm with relevant features for each label. Chin J Integr Med, 2016, 22(11): 867-871. |
105. | Chi XL, Shi MJ, Xiao HM, et al. The score model containing Chinese medicine syndrome element of blood stasis presented a better performance compared to APRI and FIB-4 in diagnosing advanced fibrosis in patients with chronic hepatitis B. Evid Based Complement Alternat Med, 2016, 2016: 3743427. |
106. | 裘涛, 孔丽娅, 陶水良, 等. 基于神经网络技术分析的中医证素研究缺血性脑卒中后抑郁的发生. 中华中医药杂志, 2015, 30(10): 3764-3767. |
107. | Kang H, Zhao Y, Li C, et al. Integrating clinical indexes into four-diagnostic information contributes to the traditional Chinese medicine (TCM) syndrome diagnosis of chronic hepatitis B. Sci Rep, 2015, 5: 9395. |
108. | 赵娜, 胡万华, 陈克龙, 等. 亚健康失眠阴虚火旺型的logistic回归及判别分析. 中华中医药学刊, 2014, 32(10): 2369-2371. |
109. | 许文杰, 刘攀, 燕海霞, 等. 528例冠心病患者中医脉象非线性动力学特征在证候诊断模型中的应用. 中华中医药杂志, 2014, 29(5): 1661-1665. |
110. | Liu GP, Yan JJ, Wang YQ, et al. Deep learning based syndrome diagnosis of chronic gastritis. Comput Math Methods Med, 2014, 2014: 938350. |
111. | 陈潇雨, 马利庄, 胡义扬. 基于决策树方法的慢性乙型肝炎中医证候分类. 上海中医药大学学报, 2013, 27(1): 40-44. |
112. | 温宗良, 岳桂华, 杨靖, 等. 基于共轭梯度算法的BP神经网络在高血压证候诊断中的应用. 山东中医药大学学报, 2012, 36(3): 183-184. |
113. | 茹清静, 叶卫江, 杨丹红, 等. 肝衰竭患者胃气定量评估及其与预后的关系. 中华中医药杂志, 2012, 27(5): 1304-1308. |
114. | Tang AC, Chung JW, Wong TK. Validation of a novel traditional Chinese medicine pulse diagnostic model using an artificial neural network. Evid Based Complement Alternat Med, 2012, 2012: 685094. |
115. | 蒋军林, 周慎, 赵瑞成, 等. 中风病气虚血瘀证的计量诊断研究. 国际中医中药杂志, 2011, 33(2): 143-145. |
116. | 李亚, 胡金亮, 李素云, 等. 基于数据挖掘的弥漫性肺间质疾病中医证候诊断模型建立研究. 辽宁中医杂志, 2010, 37(12): 2333-2335. |
117. | Liu GP, Li GZ, Wang YL, et al. Modelling of inquiry diagnosis for coronary heart disease in traditional Chinese medicine by using multi-label learning. BMC Complement Altern Med, 2010, 10: 37. |
118. | 李梢, 张宁波, 李志红, 等. 慢性乙型肝炎患者肝胆湿热证和肝郁脾虚证的决策树诊断模型初探. 中国中西医结合杂志, 2009, 29(11): 993-996. |
119. | 康明祥, 贾红, 袁婉丽. 慢性疲劳综合征定量诊断模型的研究. 实用中医内科杂志, 2009, 23(3): 29-31. |
120. | 白云静, 孟庆刚, 申洪波, 等. 基于改进的BP神经网络的糖尿病肾病中医证候非线性建模研究. 北京中医药大学学报, 2008, 31(5): 308-311. |
121. | 吴大嵘, 梁伟雄, 温泽淮, 等. 建立中风病血瘀证宏观辨证量化标准的方法探讨. 广州中医药大学学报, 1999, 16(4): 249-252, 258. |
122. | 王榕平, 王莹. 肝瘀脾虚型肝癌酶学指标生存预测模型. 中西医结合肝病杂志, 1999, 34(5): 38-39. |
123. | Rabar S, Lau R, O'Flynn N, et al. Risk assessment of fragility fractures: summary of NICE guidance. BMJ, 2012, 345: e3698. |
124. | Goff DC, Lloyd-Jones DM, Bennett G, et al. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines. Circulation, 2014, 129(25 Suppl 2): S49-S73. |
125. | Kareemi H, Vaillancourt C, Rosenberg H, et al. Machine learning versus usual care for diagnostic and prognostic prediction in the emergency department: a systematic review. Acad Emerg Med, 2021, 28(2): 184-196. |
126. | Pladet LCA, Barten JMM, Vernooij LM, et al. Prognostic models for mortality risk in patients requiring ECMO. Intensive Care Med, 2023, 49(2): 131-141. |
127. | Tan J, Ma C, Zhu C, et al. Prediction models for depression risk among older adults: systematic review and critical appraisal. Ageing Res Rev, 2023, 83: 101803. |
128. | Nagendran M, Chen Y, Lovejoy CA, et al. Artificial intelligence versus clinicians: systematic review of design, reporting standards, and claims of deep learning studies. BMJ, 2020, 368: m689. |
129. | Wynants L, Van Calster B, Collins GS, et al. Prediction models for diagnosis and prognosis of covid-19: systematic review and critical appraisal. BMJ, 2020, 369: m1328. |
130. | Steyerberg EW, Eijkemans MJ, Harrell FE, et al. Prognostic modeling with logistic regression analysis: in search of a sensible strategy in small data sets. Med Decis Making, 2001, 21(1): 45-56. |
131. | Peek N, Arts DG, Bosman RJ, et al. External validation of prognostic models for critically ill patients required substantial sample sizes. J Clin Epidemiol, 2007, 60(5): 491-501. |
132. | Steyerberg EW, Harrell FE, Borsboom GJ, et al. Internal validation of predictive models: efficiency of some procedures for logistic regression analysis. J Clin Epidemiol, 2001, 54(8): 774-781. |
133. | Austin PC, Steyerberg EW. Events per variable (EPV) and the relative performance of different strategies for estimating the out-of-sample validity of logistic regression models. Stat Methods Med Res, 2017, 26(2): 796-808. |
134. | Van der Ploeg T, Austin PC, Steyerberg EW. Modern modelling techniques are data hungry: a simulation study for predicting dichotomous endpoints. BMC Med Res Methodol, 2014, 14: 137. |
135. | Riley RD, Ensor J, Snell KIE, et al. Calculating the sample size required for developing a clinical prediction model. BMJ, 2020, 368: m441. |
136. | Moons KG, Kengne AP, Woodward M, et al. Risk prediction models: I. Development, internal validation, and assessing the incremental value of a new (bio)marker. Heart, 2012, 98(9): 683-690. |
137. | Naaktgeboren CA, Bertens LC, van Smeden M, et al. Value of composite reference standards in diagnostic research. BMJ, 2013, 347: f5605. |
138. | Moons KG, Grobbee DE. When should we remain blind and when should our eyes remain open in diagnostic studies. J Clin Epidemiol, 2002, 55(7): 633-636. |
139. | Collins GS, Reitsma JB, Altman DG, et al. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMJ, 2015, 350: g7594. |
- 1. Moons KG, Royston P, Vergouwe Y, et al. Prognosis and prognostic research: what, why, and how. BMJ, 2009, 338: b375.
- 2. Bouwmeester W, Zuithoff NP, Mallett S, et al. Reporting and methods in clinical prediction research: a systematic review. PLoS Med, 2012, 9(5): 1-12.
- 3. Steyerberg EW, Moons KG, van der Windt DA, et al. Prognosis research strategy (PROGRESS) 3: prognostic model research. PLoS Med, 2013, 10(2): e1001381.
- 4. Steyerberg EW, Vergouwe Y. Towards better clinical prediction models: seven steps for development and an ABCD for validation. Eur Heart J, 2014, 35(29): 1925-1931.
- 5. Wolff RF, Moons KGM, Riley RD, et al. PROBAST: a tool to assess the risk of bias and applicability of prediction model studies. Ann Intern Med, 2019, 170(1): 51-58.
- 6. Moons KGM, Wolff RF, Riley RD, et al. PROBAST: a tool to assess risk of bias and applicability of prediction model studies: explanation and elaboration. Ann Intern Med, 2019, 170(1): 1-33.
- 7. Andaur Navarro CL, Damen JAA, Takada T, et al. Risk of bias in studies on prediction models developed using supervised machine learning techniques: systematic review. BMJ, 2021, 375: n2281.
- 8. Chu H, Moon S, Park J, et al. The use of artificial intelligence in complementary and alternative medicine: a systematic scoping review. Front Pharmacol, 2022, 13: 826044.
- 9. Moons KG, de Groot JA, Bouwmeester W, et al. Critical appraisal and data extraction for systematic reviews of prediction modelling studies: the CHARMS checklist. PLoS Med, 2014, 11(10): e1001744.
- 10. 张馨心, 吕晓东, 庞立健, 等. 基于机器学习的特发性肺纤维化气阴两虚兼血瘀证诊断模型研究. 辽宁中医药大学学报, 2023, 25(2): 191-196.
- 11. 姚帅君, 闫敬来, 杜彩凤, 等. 基于集成学习构建围绝经期综合征中医智能诊断模型. 中医杂志, 2023, 64(6): 572-580.
- 12. 孙聪, 戴国华, 管慧, 等. 基于决策树算法的慢性心力衰竭患者中西医预后模型构建及验证. 中国中医基础医学杂志, 2023, 29(1): 120-126.
- 13. 黄少鹏, 姚衍竹. 不同中医体质联合肺功能参数的小儿咳嗽变异性哮喘的临床预测. 四川中医, 2023, 41(2): 86-90.
- 14. 高明友, 潘赐明, 丁家雯. 胃癌患者的中医证素分布及与病情严重程度的相关性研究. 广州中医药大学学报, 2023, 40(4): 802-806.
- 15. 高静, 陈琼华, 何晓铭, 等. 基于中医证型的人工全膝关节置换术后慢性疼痛的危险因素探究及风险预测模型构建. 广州中医药大学学报, 2023, 40(3): 549-555.
- 16. 董兴鲁, 高颖, 唐璐, 等. 基于多元Logistic回归的缺血性中风病恢复期肾虚证证候诊断模型研究. 现代中医临床, 2023, 30(1): 26-30.
- 17. 陈玄, 叶云金, 陈娟, 等. 绝经后女性中医症候群骨质疏松风险预测工具构建. 中国骨质疏松杂志, 2023, 29(3): 356-360.
- 18. Liu X, Huang X, Zhao J, et al. Application of machine learning in Chinese medicine differentiation of dampness-heat pattern in patients with type 2 diabetes mellitus. Heliyon, 2023, 9(2): e13289.
- 19. 朱玲, 郑婉婷, 张竹绿, 等. 基于卷积神经网络的溃疡性结肠炎证候预测模型研究. 中国数字医学, 2022, 17(4): 49-55.
- 20. 张晓兰, 方桂珍, 杨丹华, 等. 中老年女性肾阳虚型压力性尿失禁风险预测模型的构建. 护理与康复, 2022, 21(7): 1-5.
- 21. 张梦楚, 赵倩倩, 解天骁, 等. 基于脉图参数构建原发性高血压患者伴左心室肥厚的风险预测列线图模型. 中国中医药信息杂志, 2022, 29(8): 116-122.
- 22. 杨继, 张垚, 高晟玮, 等. 预测高血压病患者合并慢性肾脏病风险的列线图模型构建. 天津中医药, 2022, 39(3): 295-302.
- 23. 夏庭伟, 李炜弘, 丁维俊, 等. 2型糖尿病并发肾病中西医多模态特征融合预测模型构建. 中华中医药杂志, 2022, 37(7): 4116-4120.
- 24. 王中瑞, 符宇, 赵瑞霞, 等. 糖尿病合并稳定型心绞痛患者发生主要不良心脑血管事件的中医预测模型构建及应用评估研究. 中国全科医学, 2022, 25(20): 2450-2456.
- 25. 王丽丹, 刘可可, 王永祥, 等. 中医体质类型与阿尔茨海默病关系的研究. 中华行为医学与脑科学杂志, 2022, 31(6): 541-547.
- 26. 田之魁, 张鑫海, 孙璇, 等. 基于舌象的糖尿病足风险预测模型的构建. 中医杂志, 2022, 63(19): 1840-1846.
- 27. 唐艳芳, 刘旭东, 吕萍, 等. 基于BP神经网络、随机森林和决策树建立早期慢性乙型病毒性肝炎肝硬化无创诊断模型. 重庆医学, 2022, 51(7): 1161-1166.
- 28. 任丽丽, 戴国华, 高武霖, 等. 基于Lasso-Cox回归评价中医药干预在慢性心力衰竭患者预后中的治疗价值. 中华中医药杂志, 2022, 37(10): 6000-6005.
- 29. 李军, 胡晓娟, 周昌乐, 等. 基于随机森林算法的糖尿病舌象特征分析和诊断模型研究. 中华中医药杂志, 2022, 37(3): 1639-1643.
- 30. 贾文, 尹莹, 余晗, 等. 基于决策树模型的中西结合诊疗模式下新型冠状病毒感染住院患者死亡风险因素分析. 亚太传统医药, 2022, 18(7): 68-74.
- 31. 洪敏萍, 周长玉, 卜阳阳, 等. 基于多参数MRI影像组学特征预测肉芽肿性乳腺炎中医证型的研究. 浙江中医药大学学报, 2022, 46(5): 483-489.
- 32. 樊佳赛, 杜艺菲, 许佳颖, 等. 基于中医证候和机器学习构建慢性心力衰竭中西医结合预后模型. 基础医学与临床, 2022, 42(8): 1169-1175.
- 33. 段绍杰, 刘尊敬, 陈佳良, 等. 成人非酒精性脂肪性肝病患者ALT升高的危险因素分析及预测模型建立. 海南医学院学报, 2022, 28(4): 263-268.
- 34. 崔伟锋, 林萍, 刘萧萧, 等. 基于机器学习的原发性高血压心血管风险预后模型. 中国老年学杂志, 2022, 42(15): 3625-3629.
- 35. 车前子, 王晶, 白卫国, 等. 基于LASSO回归的骨质疏松肾阳虚状态辨识模型研究. 中华中医药杂志, 2022, 37(10): 5928-5933.
- 36. Yang J, Chen L, Cai S, et al. Prediction of H-type hypertension based on pulse-taking and inquiry diagnosis. Biomed Signal Process Control, 2022, 75: 103723.
- 37. Wang W, Zeng W, Chen X, et al. Parameter study on characteristic pulse diagram of polycystic ovary syndrome based on logistic regression analysis. J Obstet Gynaecol, 2022, 42(8): 3712-3719.
- 38. Tang M, Gao L, He B, et al. Machine learning based prognostic model of Chinese medicine affecting the recurrence and metastasis of Ⅰ-Ⅲ stage colorectal cancer: a retrospective study in China. Front Oncol, 2022, 12: 1044344.
- 39. Luo B, Yang M, Han Z, et al. Establishment of a nomogram-based prognostic model (LASSO-COX Regression) for predicting progression-free survival of primary non-small cell lung cancer patients treated with adjuvant chinese herbal medicines therapy: a retrospective study of case series. Front Oncol, 2022, 12: 882278.
- 40. Huang Z, Miao J, Chen J, et al. A traditional Chinese medicine syndrome classification model based on cross-feature generation by convolution neural network: model development and validation. JMIR Med Inform, 2022, 10(4): e29290.
- 41. Filist S, Al-Kasasbeh RT, Shatalova O, et al. Biotechnical system based on fuzzy logic prediction for surgical risk classification using analysis of current-voltage characteristics of acupuncture points. J Integr Med, 2022, 20(3): 252-264.
- 42. Cheng B, Ma J, Chen X, et al. Objective study of the facial parameters of observations in patients with type 2 diabetes mellitus by machine learning. Ann Transl Med, 2022, 10(18): 960.
- 43. 朱兆鑫, 杨珊珊, 彭安杰, 等. 基于自适应矩估计的BP神经网络对中医痛经证型分类的研究. 世界科学技术-中医药现代化, 2021, 23(12): 4560-4568.
- 44. 周淑珍, 张燕媚, 何志仁, 等. 基于中医药治疗的糖尿病肾病风险预测模型构建与验证. 时珍国医国药, 2021, 32(6): 1505-1509.
- 45. 章轶立, 谭楠楠, 刘俊杰, 等. 基本证候视角下的慢性心力衰竭关联因素筛选及判别模型构建: 一项多中心横断面研究. 中华中医药杂志, 2021, 36(6): 3205-3208.
- 46. 叶桦, 何黎, 胡远樟, 等. 基于卷积神经网络的2型糖尿病证候分布演化规律研究. 时珍国医国药, 2021, 32(6): 1522-1524.
- 47. 杨敏, 王君, 牛文全, 等. 儿童偏矮身材的中医体质分布及风险预测模型构建. 安徽中医药大学学报, 2021, 40(6): 29-36.
- 48. 杨慧婷, 蒋金兰, 金林珍, 等. 针灸治疗中风恢复期临床预测模型的建立和分析. 中国针灸, 2021, 41(8): 855-860.
- 49. 熊梦欣, 曾明星, 周广文, 等. 亚急性甲状腺炎肝经郁热证量化诊断标准的初探. 中国中医急症, 2021, 30(9): 1527-1531.
- 50. 王志武, 刘春秋, 王静, 等. 放射性肺损伤肺癌病证结合预测模型的构建和验证. 中华中医药杂志, 2021, 36(9): 5556-5560.
- 51. 王钰涵, 段鹏喆, 张鑫, 等. 基于决策树和神经网络的高血压病危险因素研究. 世界科学技术-中医药现代化, 2021, 23(8): 2784-2794.
- 52. 孙千惠, 李婷婷, 王晓燕, 等. 肺脾两虚型支气管哮喘诊断预测模型研究. 中医药导报, 2021, 27(1): 79-81.
- 53. 刘超, 高嘉良, 董艳, 等. 基于BP神经网络的冠状动脉临界病变患者证候要素及其常见组合中医辨证诊断模型研究. 中国中医药信息杂志, 2021, 28(3): 104-110.
- 54. 李妍, 彭心怡, 孔燕妮, 等. 免疫检查点抑制剂疗效预测分析及结合中医证型的Nomogram图构建. 浙江中西医结合杂志, 2021, 31(8): 721-725.
- 55. 葛修芹, 张金山, 张忠诚. 类风湿性关节炎并间质性肺病的影响因素分析及其风险预测列线图模型构建研究. 实用心脑肺血管病杂志, 2021, 29(9): 53-58.
- 56. 曹云, 舒鑫, 张丹莉, 等. 急性缺血性脑卒中气虚证列线图预测模型的构建. 中华中医药杂志, 2021, 36(4): 1939-1944.
- 57. Zhao T, Yang X, Wan R, et al. Study of TCM syndrome identification modes for patients with type 2 diabetes mellitus based on data mining. Evid Based Complement Alternat Med, 2021, 2021: 5528550.
- 58. Xia SJ, Gao BZ, Wang SH, et al. Modeling of diagnosis for metabolic syndrome by integrating symptoms into physiochemical indexes. Biomed Pharmacother, 2021, 137: 111367.
- 59. Xi X, Fu Z, Liu T, et al. Establishment and verification of scoring system for colorectal adenoma recurrence. Risk Manag Healthc Policy, 2021, 14: 4545-4552.
- 60. Wu J, Hu R, Li M, et al. Diagnosis of sleep disorders in traditional Chinese medicine based on adaptive neuro-fuzzy inference system. Biomed Signal Process Control, 2021, 70: 102334.
- 61. Wang Y, Zhang R, Pi M, et al. Correlation between TCM syndromes and type 2 diabetic comorbidities based on fully connected neural network prediction model. Evid Based Complement Alternat Med, 2021, 2021: 6095476.
- 62. Shi YL, Liu JY, Hu XJ, et al. A new method for syndrome classification of non-small-cell lung cancer based on data of tongue and pulse with machine learning. Biomed Res Int, 2021, 2021: 1337558.
- 63. Li J, Yuan P, Hu X, et al. A tongue features fusion approach to predicting prediabetes and diabetes with machine learning. J Biomed Inform, 2021, 115: 103693.
- 64. Li J, Chen Q, Hu X, et al. Establishment of noninvasive diabetes risk prediction model based on tongue features and machine learning techniques. Int J Med Inform, 2021, 149: 104429.
- 65. Guan H, Dai GH, Gao WL, et al. A 5-year survival prediction model for chronic heart failure patients induced by coronary heart disease with traditional Chinese medicine intervention. Evid Based Complement Alternat Med, 2021, 2021: 4381256.
- 66. Ding L, Zhang XY, Wu DY, et al. Application of an extreme learning machine network with particle swarm optimization in syndrome classification of primary liver cancer. J Integr Med, 2021, 19(5): 395-407.
- 67. 张振, 田雪飞, 郜文辉, 等. 基于决策树及贝叶斯网络建立原发性肝癌肝郁脾虚证诊断模型研究. 中国中医药信息杂志, 2020, 27(9): 115-120.
- 68. 于李. 神经网络模型预测老年HBV相关原发性肝癌患者预后研究. 转化医学杂志, 2020, 9(5): 296-298, 307.
- 69. 王一苇, 倪寅, 纪超凡, 等. 基于疗效影响因素对加味清络饮治疗类风湿性关节炎临床预测模型与列线图绘制的初步探索. 中医药信息, 2020, 37(6): 82-87.
- 70. 刘超, 陈恒文, 刘兰椿, 等. 基于多种算法对冠心病不稳定型心绞痛肾虚血瘀证诊断模型的研究. 世界科学技术-中医药现代化, 2020, 22(11): 3839-3845.
- 71. 宫文浩, 兰天莹, 莫清莲, 等. 基于决策树和人工神经网络的小儿肺炎痰热闭肺证诊断模型研究. 世界科学技术-中医药现代化, 2020, 22(7): 2548-2555.
- 72. 丁亮, 章新友, 刘莉萍, 等. 基于深度神经网络的原发性肝癌证型诊断分类预测模型. 世界科学技术-中医药现代化, 2020, 22(12): 4185-4192.
- 73. 崔伟锋, 刘萧萧, 韩静旖, 等. 基于随机森林的原发性高血压心血管风险预后模型. 中国老年学杂志, 2020, 40(4): 814-816.
- 74. 曾雪元, 宫伟国, 胡云峰, 等. 基于决策树算法构建缺血性卒中复发的预测模型. 吉林中医药, 2020, 40(4): 437-440.
- 75. 安静, 彭继升, 魏玥, 等. 胃癌前病变寒热错杂证中医诊断模型的建立. 现代中医临床, 2020, 27(1): 12-15.
- 76. Zhao Y, Peng H, Wang S, et al. Clinical analysis of acute coronary syndrome patients with Qi-blood syndromes: establishment of a diagnostic prediction model for syndrome differentiation. Ann Palliat Med, 2020, 9(4): 2096-2110.
- 77. Ren Q, Zhou XW, He MY, et al. A quantitative diagnostic method for phlegm and blood stasis syndrome in coronary heart disease using tongue, face, and pulse indexes: an exploratory pilot study. J Altern Complement Med, 2020, 26(8): 729-737.
- 78. Liu Z, He H, Yan S, et al. End-to-end models to imitate traditional Chinese medicine syndrome differentiation in lung cancer diagnosis: model development and validation. JMIR Med Inform, 2020, 8(6): e17821.
- 79. 赵书颖, 张新雅, 李运伦. 基于决策树及神经网络的高血压病阴阳两虚证诊断模型的研究. 中华中医药学刊, 2019, 37(5): 1120-1123.
- 80. 章轶立, 魏戌, 聂佩芸, 等. 基于SMOTE算法和决策树的绝经后骨质疏松性骨折分类模型建构. 中国骨质疏松杂志, 2019, 25(1): 1-5.
- 81. 徐钰莹, 张文丽, 杨宇飞, 等. 晚期结直肠癌中医药干预治疗疗效预测模型的建立与应用. 世界科学技术-中医药现代化, 2019, 21(7): 1518-1524.
- 82. 舒鑫, 曹云, 黄幸, 等. 基于神经网络分析技术的急性缺血性卒中气虚证预测模型构建的研究. 环球中医药, 2019, 12(11): 1650-1655.
- 83. 付源峰, 林洁涛, 黄子菁, 等. 中西医结合治疗晚期非小细胞肺癌队列疗效预测模型的建立. 青岛大学学报(医学版), 2019, 55(6): 661-666.
- 84. 章轶立, 魏戌, 聂佩芸, 等. 基于GroupLasso的Logistic回归模型构建绝经后骨质疏松性骨折初发风险评估工具. 中国骨质疏松杂志, 2018, 24(8): 994-999.
- 85. 王萍, 史彬, 温艳东, 等. 胃癌前病变病证结合风险预测模型的构建研究. 中国中西医结合杂志, 2018, 38(7): 773-778.
- 86. 王娟, 赵慧辉, 陈建新, 等. 基于神经网络技术分析的慢性心力衰竭血瘀证诊断模型研究. 世界中医药, 2018, 13(9): 2122-2126.
- 87. 李静茹, 马建萍, 马秀兰, 等. Logistic回归联合ROC曲线评价中医症状对HIV感染者中医证型的预测价值. 中华中医药杂志, 2018, 33(12): 5627-5629.
- 88. Luo ZY, Cui J, Hu XJ, et al. A study of machine-learning classifiers for hypertension based on radial pulse wave. Biomed Res Int, 2018, 2018: 2964816.
- 89. 卓缘圆, 于海波, 杨卓欣, 等. 不同中医证型复发脑梗死的眼底血管特征分析及预测模型的建立. 辽宁中医杂志, 2017, 44(5): 909-913.
- 90. 张赟华, 王益斐, 李国法. 中医症状评分在慢性心功能不全急性加重期患者预后评价中的应用价值及死亡概率模型的建立. 中国中西医结合急救杂志, 2017, 24(5): 469-472.
- 91. 许明东, 马晓聪, 温宗良, 等. 支持向量机在高血压病中医证候诊断中的应用. 中华中医药杂志, 2017, 32(6): 2497-2500.
- 92. 吕航, 杨秋莉, 杜渐, 等. 基于决策树预测糖尿病合并冠心病患病风险的中医人格体质特征研究. 南京中医药大学学报, 2017, 33(6): 639-642.
- 93. 吕航, 王昊, 刘媛, 等. 基于决策树的中医人格体质对2型糖尿病患者伴发非酒精性脂肪肝病风险的预测研究. 中国中医基础医学杂志, 2017, 23(9): 1257-1259.
- 94. 吕航, 杜渐, 刘媛, 等. 多层感知器模型在中医人格、体质预测糖尿病性冠心病患病风险中的应用研究. 中国中医药信息杂志, 2017, 24(12): 88-91.
- 95. 黄鹂, 梁咏竹, 林立宇, 等. 糖尿病不同阶段人群经络值特点及预测模型的构建. 广东医学, 2017, 38(17): 2707-2710.
- 96. Zhao Y, Kang H, Peng JH, et al. Key symptoms selection for two major syndromes diagnosis of Chinese medicine in chronic hepatitis B. Chin J Integr Med, 2017, 23(4): 253-260.
- 97. Zhang J, Xu J, Hu X, et al. Diagnostic method of diabetes based on support vector machine and tongue images. Biomed Res Int, 2017, 2017: 7961494.
- 98. 姚岚, 方芳. 中西医联合构建ACS患者发生心脏事件的预测模型. 世界中西医结合杂志, 2016, 11(10): 1420-1424,1443.
- 99. 许明东, 马晓聪, 岳桂华, 等. 基于支持向量机的高血压中医证候与血脂、血尿酸、空腹血糖关系的研究. 时珍国医国药, 2016, 27(12): 3063-3065.
- 100. 徐玮斐, 顾巍杰, 刘国萍, 等. 基于随机森林和多标记学习算法的慢性胃炎实证特征选择和证候分类识别研究. 中国中医药信息杂志, 2016, 23(8): 18-23.
- 101. 王志武, 王静怡, 胡建, 等. 基于中西医多模态信息的放射性肺损伤早期预测模型. 中国煤炭工业医学杂志, 2016, 19(3): 413-417.
- 102. 唐继云, 李东芳, 侯芳芳, 等. 应用Logistic回归和ROC曲线探讨胃癌脾胃气虚证中医诊断模型. 中医药导报, 2016, 22(12): 30-34.
- 103. 郭丽颖, 袁晨翼, 贾建伟, 等. HBV-ACLF患者“胃气”相关预后模型的建立. 中华肿瘤防治杂志, 2016, 23(S1): 143-144, 152.
- 104. Xu J, Xu ZX, Lu P, et al. Classifying syndromes in Chinese medicine using multi-label learning algorithm with relevant features for each label. Chin J Integr Med, 2016, 22(11): 867-871.
- 105. Chi XL, Shi MJ, Xiao HM, et al. The score model containing Chinese medicine syndrome element of blood stasis presented a better performance compared to APRI and FIB-4 in diagnosing advanced fibrosis in patients with chronic hepatitis B. Evid Based Complement Alternat Med, 2016, 2016: 3743427.
- 106. 裘涛, 孔丽娅, 陶水良, 等. 基于神经网络技术分析的中医证素研究缺血性脑卒中后抑郁的发生. 中华中医药杂志, 2015, 30(10): 3764-3767.
- 107. Kang H, Zhao Y, Li C, et al. Integrating clinical indexes into four-diagnostic information contributes to the traditional Chinese medicine (TCM) syndrome diagnosis of chronic hepatitis B. Sci Rep, 2015, 5: 9395.
- 108. 赵娜, 胡万华, 陈克龙, 等. 亚健康失眠阴虚火旺型的logistic回归及判别分析. 中华中医药学刊, 2014, 32(10): 2369-2371.
- 109. 许文杰, 刘攀, 燕海霞, 等. 528例冠心病患者中医脉象非线性动力学特征在证候诊断模型中的应用. 中华中医药杂志, 2014, 29(5): 1661-1665.
- 110. Liu GP, Yan JJ, Wang YQ, et al. Deep learning based syndrome diagnosis of chronic gastritis. Comput Math Methods Med, 2014, 2014: 938350.
- 111. 陈潇雨, 马利庄, 胡义扬. 基于决策树方法的慢性乙型肝炎中医证候分类. 上海中医药大学学报, 2013, 27(1): 40-44.
- 112. 温宗良, 岳桂华, 杨靖, 等. 基于共轭梯度算法的BP神经网络在高血压证候诊断中的应用. 山东中医药大学学报, 2012, 36(3): 183-184.
- 113. 茹清静, 叶卫江, 杨丹红, 等. 肝衰竭患者胃气定量评估及其与预后的关系. 中华中医药杂志, 2012, 27(5): 1304-1308.
- 114. Tang AC, Chung JW, Wong TK. Validation of a novel traditional Chinese medicine pulse diagnostic model using an artificial neural network. Evid Based Complement Alternat Med, 2012, 2012: 685094.
- 115. 蒋军林, 周慎, 赵瑞成, 等. 中风病气虚血瘀证的计量诊断研究. 国际中医中药杂志, 2011, 33(2): 143-145.
- 116. 李亚, 胡金亮, 李素云, 等. 基于数据挖掘的弥漫性肺间质疾病中医证候诊断模型建立研究. 辽宁中医杂志, 2010, 37(12): 2333-2335.
- 117. Liu GP, Li GZ, Wang YL, et al. Modelling of inquiry diagnosis for coronary heart disease in traditional Chinese medicine by using multi-label learning. BMC Complement Altern Med, 2010, 10: 37.
- 118. 李梢, 张宁波, 李志红, 等. 慢性乙型肝炎患者肝胆湿热证和肝郁脾虚证的决策树诊断模型初探. 中国中西医结合杂志, 2009, 29(11): 993-996.
- 119. 康明祥, 贾红, 袁婉丽. 慢性疲劳综合征定量诊断模型的研究. 实用中医内科杂志, 2009, 23(3): 29-31.
- 120. 白云静, 孟庆刚, 申洪波, 等. 基于改进的BP神经网络的糖尿病肾病中医证候非线性建模研究. 北京中医药大学学报, 2008, 31(5): 308-311.
- 121. 吴大嵘, 梁伟雄, 温泽淮, 等. 建立中风病血瘀证宏观辨证量化标准的方法探讨. 广州中医药大学学报, 1999, 16(4): 249-252, 258.
- 122. 王榕平, 王莹. 肝瘀脾虚型肝癌酶学指标生存预测模型. 中西医结合肝病杂志, 1999, 34(5): 38-39.
- 123. Rabar S, Lau R, O'Flynn N, et al. Risk assessment of fragility fractures: summary of NICE guidance. BMJ, 2012, 345: e3698.
- 124. Goff DC, Lloyd-Jones DM, Bennett G, et al. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines. Circulation, 2014, 129(25 Suppl 2): S49-S73.
- 125. Kareemi H, Vaillancourt C, Rosenberg H, et al. Machine learning versus usual care for diagnostic and prognostic prediction in the emergency department: a systematic review. Acad Emerg Med, 2021, 28(2): 184-196.
- 126. Pladet LCA, Barten JMM, Vernooij LM, et al. Prognostic models for mortality risk in patients requiring ECMO. Intensive Care Med, 2023, 49(2): 131-141.
- 127. Tan J, Ma C, Zhu C, et al. Prediction models for depression risk among older adults: systematic review and critical appraisal. Ageing Res Rev, 2023, 83: 101803.
- 128. Nagendran M, Chen Y, Lovejoy CA, et al. Artificial intelligence versus clinicians: systematic review of design, reporting standards, and claims of deep learning studies. BMJ, 2020, 368: m689.
- 129. Wynants L, Van Calster B, Collins GS, et al. Prediction models for diagnosis and prognosis of covid-19: systematic review and critical appraisal. BMJ, 2020, 369: m1328.
- 130. Steyerberg EW, Eijkemans MJ, Harrell FE, et al. Prognostic modeling with logistic regression analysis: in search of a sensible strategy in small data sets. Med Decis Making, 2001, 21(1): 45-56.
- 131. Peek N, Arts DG, Bosman RJ, et al. External validation of prognostic models for critically ill patients required substantial sample sizes. J Clin Epidemiol, 2007, 60(5): 491-501.
- 132. Steyerberg EW, Harrell FE, Borsboom GJ, et al. Internal validation of predictive models: efficiency of some procedures for logistic regression analysis. J Clin Epidemiol, 2001, 54(8): 774-781.
- 133. Austin PC, Steyerberg EW. Events per variable (EPV) and the relative performance of different strategies for estimating the out-of-sample validity of logistic regression models. Stat Methods Med Res, 2017, 26(2): 796-808.
- 134. Van der Ploeg T, Austin PC, Steyerberg EW. Modern modelling techniques are data hungry: a simulation study for predicting dichotomous endpoints. BMC Med Res Methodol, 2014, 14: 137.
- 135. Riley RD, Ensor J, Snell KIE, et al. Calculating the sample size required for developing a clinical prediction model. BMJ, 2020, 368: m441.
- 136. Moons KG, Kengne AP, Woodward M, et al. Risk prediction models: I. Development, internal validation, and assessing the incremental value of a new (bio)marker. Heart, 2012, 98(9): 683-690.
- 137. Naaktgeboren CA, Bertens LC, van Smeden M, et al. Value of composite reference standards in diagnostic research. BMJ, 2013, 347: f5605.
- 138. Moons KG, Grobbee DE. When should we remain blind and when should our eyes remain open in diagnostic studies. J Clin Epidemiol, 2002, 55(7): 633-636.
- 139. Collins GS, Reitsma JB, Altman DG, et al. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMJ, 2015, 350: g7594.