1. |
周俊林, 萧毅, 张雪君, 等. 中国医学影像人工智能应用现状调研报告. 中华放射学杂志, 2022, 56(11): 1248-1253.
|
2. |
刘士远. 医学影像人工智能发展趋势与挑战. 中华放射学杂志, 2021, 55(7): 700-702.
|
3. |
陈冲, 夏黎明. 积极稳妥地推进人工智能在医学影像的应用. 中华放射学杂志, 2022, 56(1): 5-8.
|
4. |
Boverhof BJ, Redekop WK, Bos D, et al. Radiology AI deployment and assessment rubric (RADAR) to bring value-based AI into radiological practice. Insights Imaging, 2024, 15(1): 34.
|
5. |
Langlotz CP. The Future of AI and informatics in radiology: 10 predictions. Radiology, 2023, 309(1): e231114.
|
6. |
Yang L, Ene IC, Arabi Belaghi R, et al. Stakeholders' perspectives on the future of artificial intelligence in radiology: a scoping review. Eur Radiol, 2022, 32(3): 1477-1495.
|
7. |
Rivera SC, Liu X, Chan AW, et al. Guidelines for clinical trial protocols for interventions involving artificial intelligence: the SPIRIT-AI Extension. BMJ, 2020, 370: m3210.
|
8. |
Liu X, Rivera SC, Moher D, et al. Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI Extension. BMJ, 2020, 370: m3164.
|
9. |
Vasey B, Nagendran M, Campbell B, et al. Reporting guideline for the early-stage clinical evaluation of decision support systems driven by artificial intelligence: DECIDE-AI. Nat Med, 2022, 28(5): 924-933.
|
10. |
Collins GS, Moons KGM, Dhiman P, et al. TRIPOD+AI statement: updated guidance for reporting clinical prediction models that use regression or machine learning methods. BMJ, 2024, 385: e078378.
|
11. |
Sounderajah V, Ashrafian H, Rose S, et al. A quality assessment tool for artificial intelligence-centered diagnostic test accuracy studies: QUADAS-AI. Nat Med, 2021, 27(10): 1663-1665.
|
12. |
Sounderajah V, Ashrafian H, Golub RM, et al. Developing a reporting guideline for artificial intelligence-centred diagnostic test accuracy studies: the STARD-AI protocol. BMJ Open, 2021, 11(6): e047709.
|
13. |
Collins GS, Dhiman P, Andaur Navarro CL, et al. Protocol for development of a reporting guideline (TRIPOD-AI) and risk of bias tool (PROBAST-AI) for diagnostic and prognostic prediction model studies based on artificial intelligence. BMJ Open, 2021, 11(7): e048008.
|
14. |
Mongan J, Moy L, Kahn CE. Checklist for artificial intelligence in medical imaging (CLAIM): a guide for authors and reviewers. Radiol Artif Intell, 2020, 2(2): e200029.
|
15. |
O'Shea RJ, Sharkey AR, Cook GJR, et al. Systematic review of research design and reporting of imaging studies applying convolutional neural networks for radiological cancer diagnosis. Eur Radiol, 2021, 31(10): 7969-7983.
|
16. |
Si L, Zhong J, Huo J, et al. Deep learning in knee imaging: a systematic review utilizing a Checklist for Artificial Intelligence in Medical Imaging (CLAIM). Eur Radiol, 2022, 32(2): 1353-1361.
|
17. |
Belue MJ, Harmon SA, Lay NS, et al. The low rate of adherence to checklist for artificial intelligence in medical imaging criteria among published prostate MRI artificial intelligence algorithms. J Am Coll Radiol, 2023, 20(2): 134-145.
|
18. |
Zhong J, Hu Y, Zhang G, et al. An updated systematic review of radiomics in osteosarcoma: utilizing CLAIM to adapt the increasing trend of deep learning application in radiomics. Insights Imaging, 2022, 13(1): 138.
|
19. |
Sivanesan U, Wu K, McInnes MDF, et al. Checklist for artificial intelligence in medical imaging reporting adherence in peer-reviewed and preprint manuscripts with the highest altmetric attention scores: a meta-research study. Can Assoc Radiol J, 2023, 74(2): 334-342.
|
20. |
Kocak B, Keles A, Akinci D'Antonoli T. Self-reporting with checklists in artificial intelligence research on medical imaging: a systematic review based on citations of CLAIM. Eur Radiol, 2024, 34(4): 2805-2815.
|
21. |
诸宇佳, 韩慧, 卫建华, 等. 人工智能医学影像研究报告规范: CLAIM检查清单解读. 中国循证医学杂志, 2023, 23(12): 1478-1484.
|
22. |
王亚辉, 徐虹, 李大金. 人工智能医学影像研究报告规范(CLAIM)的解读及应用建议. 出版与印刷, 2023, (6): 89-95.
|
23. |
Tejani AS, Klontzas ME, Gatti AA, et al. Checklist for artificial intelligence in medical imaging (CLAIM): 2024 update. Radiol Artif Intell, 2024, 6(4): e240300.
|
24. |
Bossuyt PM, Reitsma JB, Bruns DE, et al. STARD 2015: an updated list of essential items for reporting diagnostic accuracy studies. BMJ, 2015, 351: h5527.
|
25. |
Luo W, Phung D, Tran T, et al. Guidelines for developing and reporting machine learning predictive models in biomedical research: a multidisciplinary view. J Med Internet Res, 2016, 18(12): e323.
|
26. |
Handelman GS, Kok HK, Chandra RV, et al. Peering into the black box of artificial intelligence: evaluation metrics of machine learning methods. AJR Am J Roentgenol, 2019, 212(1): 38-43.
|
27. |
Park SH, Han K. Methodologic guide for evaluating clinical performance and effect of artificial intelligence technology for medical diagnosis and prediction. Radiology, 2018, 286(3): 800-809.
|
28. |
Bluemke DA, Moy L, Bredella MA, et al. Assessing radiology research on artificial intelligence: a brief guide for authors, reviewers, and readers-from the radiology editorial board. Radiology, 2020, 294(3): 487-489.
|
29. |
Provenzale JM, Stanley RJ. A systematic guide to reviewing a manuscript. AJR Am J Roentgenol, 2005, 185(4): 848-854.
|
30. |
Budovec JJ, Kahn CE. Evidence-based radiology: a primer in reading scientific articles. AJR Am J Roentgenol, 2010, 195(1): W1-W4.
|
31. |
Kocak B, Baessler B, Bakas S, et al. Checklist for evaluation of radiomics research (CLEAR): a step-by-step reporting guideline for authors and reviewers endorsed by ESR and EuSoMII. Insights Imaging, 2023, 14(1): 75.
|
32. |
Kocak B, Borgheresi A, Ponsiglione A, et al. Explanation and elaboration with examples for CLEAR (CLEAR-E3): an EuSoMII radiomics auditing group initiative. Eur Radiol Exp, 2024, 8(1): 72.
|
33. |
Kocak B, Akinci D'Antonoli T, Mercaldo N, et al. METhodological RadiomICs Score (METRICS): a quality scoring tool for radiomics research endorsed by EuSoMII. Insights Imaging, 2024, 15(1): 8.
|
34. |
Zhong J, Xing Y, Lu J, et al. The endorsement of general and artificial intelligence reporting guidelines in radiological journals: a meta-research study. BMC Med Res Methodol, 2023, 23(1): 292.
|
35. |
Koçak B, Keleş A, Köse F. Meta-research on reporting guidelines for artificial intelligence: are authors and reviewers encouraged enough in radiology, nuclear medicine, and medical imaging journals. Diagn Interv Radiol, 2024, 30(5): 291-298.
|