| 1. |
American Diabetes Association Professional Practice Committee. 2. Diagnosis and classification of diabetes: standards of care in diabetes-2025. Diabetes Care, 2025, 48(1 Suppl 1): S27-S49.
|
| 2. |
Tan TE, Wong TY. Diabetic retinopathy: looking forward to 2030. Front Endocrinol (Lausanne), 2023, 13: 1077669.
|
| 3. |
Cheung N, Mitchell P, Wong TY. Diabetic retinopathy. Lancet, 2010, 376(9735): 124-136.
|
| 4. |
Diabetic retinopathy. Nature Reviews Disease Primers, 2016, 2(1): 16013.
|
| 5. |
邓宇轩, 叶雯青, 孙艳婷, 等. 中国糖尿病视网膜病变患病率的荟萃分析. 中华医学杂志, 2020, 100(48): 3846-3852.
|
| 6. |
张佳慧, 陈晓隆. 糖尿病视网膜病变的诊断和治疗: 2016-2018年最新研究进展. 眼科新进展, 2018, 38(12): 1185-1190.
|
| 7. |
Flaxel CJ, Adelman RA, Bailey ST, et al. Diabetic retinopathy preferred practice Pattern®. Ophthalmology, 2020, 127(1): P66-P145.
|
| 8. |
Cole JB, Florez JC. Genetics of diabetes mellitus and diabetes complications. Nat Rev Nephrol, 2020, 16(7): 377-390.
|
| 9. |
Dinpajhouh M, Seyyedsalehi SA. Automated detecting and severity grading of diabetic retinopathy using transfer learning and attention mechanism. Neural Comput Appl, 2023, 35(33): 23959-23971.
|
| 10. |
孙石磊, 李明, 刘静, 等. 深度学习在糖尿病视网膜病变分类领域的研究进展. 计算机工程与应用, 2024, 60(8): 16-30.
|
| 11. |
Tsiknakis N, Theodoropoulos D, Manikis G, et al. Deep learning for diabetic retinopathy detection and classification based on fundus images: a review. Comput Biol Med, 2021, 135: 104599.
|
| 12. |
Grauslund J. Diabetic retinopathy screening in the emerging era of artificial intelligence. Diabetologia, 2022, 65(9): 1415-1423.
|
| 13. |
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015, 521(7553): 436-444.
|
| 14. |
Jang HJ, Cho KO. Applications of deep learning for the analysis of medical data. Arch Pharm Res, 2019, 42(6): 492-504.
|
| 15. |
康林, 刘喜, 程浩, 等. 深度学习在内镜中识别萎缩性胃炎和肠上皮化生的诊断效能: 系统综述和Meta分析. 海南医学院学报, 2024, 30(17): 1335-1345.
|
| 16. |
张倩, 曹云太, 王志洁, 等. 深度学习在早期胃癌内镜图像诊断中的研究进展. 实用医学杂志, 2025, 41(14): 2160-2166.
|
| 17. |
罗文斌, 郑晔, 刘欣, 等. 基于DCE-MRI图像深度学习模型鉴别诊断乳腺良恶性肿瘤的价值分析. 磁共振成像, 2024, 15(10): 22-29.
|
| 18. |
宫阿娟, 潘天荣. 多病种眼底疾病诊断的深度学习策略讨论. 计算机工程, 2024, 50(5): 363-372.
|
| 19. |
Dong L, He W, Zhang R, et al. Artificial intelligence for screening of multiple retinal and optic nerve diseases. JAMA Netw Open, 2022, 5(5): e229960.
|
| 20. |
McInnes MDF, Moher D, Thombs BD, et al. Preferred reporting items for a systematic review and meta-analysis of diagnostic test accuracy studies: the PRISMA-DTA statement. JAMA, 2018, 319(4): 388-396.
|
| 21. |
Whiting PF, Rutjes AW, Westwood ME, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med, 2011, 155(8): 529-536.
|
| 22. |
Chetoui M, Akhloufi MA. Explainable end-to-end deep learning for diabetic retinopathy detection across multiple datasets. J Med Imaging (Bellingham), 2020, 7(4): 044503.
|
| 23. |
Bodapati JD, Shaik NS, Naralasetti V. Composite deep neural network with gated-attention mechanism for diabetic retinopathy severity classification. J Ambient Intell Humaniz Comput, 2021, 12(10): 9825-9839.
|
| 24. |
Mohammedhasan M, Uğuz H. A new early stage diabetic retinopathy diagnosis model using deep convolutional neural networks and principal component analysis. Traitement du Signal, 2020, 37(5): 711-722.
|
| 25. |
Sanjana S, Shadin NS, Farzana M. Automated diabetic retinopathy detection using transfer learning models. 2021 5th International Conference on Electrical Engineering and Information Communication Technology (ICEEICT), 2021.
|
| 26. |
Shakibania H, Raoufi S, Pourafkham B, et al. Dual branch deep learning network for detection and stage grading of diabetic retinopathy. Biomed Signal Process Control, 2024, 93: 106061.
|
| 27. |
Sridhar S, Sanagavarapu S. Detection and prognosis evaluation of diabetic retinopathy using ensemble deep convolutional neural networks. Proceedings of the 2020 International Electronics Symposium (IES), 2020.
|
| 28. |
Vives-Boix V, Ruiz-Fernández D. Diabetic retinopathy detection through convolutional neural networks with synaptic metaplasticity. Comput Methods Programs Biomed, 2021, 206: 106094.
|
| 29. |
Zhang W, Zhong J, Yang S, et al. Automated identification and grading system of diabetic retinopathy using deep neural networks. Knowl Bas Sys, 2019, 175: 12-25.
|
| 30. |
Kumar G, Chatterjee S, Chattopadhyay C. DRISTI: a hybrid deep neural network for diabetic retinopathy diagnosis. Signal Image Video Process, 2021, 15(8): 1679-1686.
|
| 31. |
Nur-A-Alam M, Nasir MMK, Ahsan M, et al. A faster Rcnn-based diabetic retinopathy detection method using fused features from retina images. IEEE Access, 2023, 11: 124331-124349.
|
| 32. |
Hu J, Wang H, Wang L, et al. Graph adversarial transfer learning for diabetic retinopathy classification. IEEE Access, 2022, 10: 119071-119083.
|
| 33. |
Zhu D, Ge A, Chen X, et al. Supervised contrastive learning with angular margin for the detection and grading of diabetic retinopathy. Diagnostics (Basel), 2023, 13(14): 2389.
|
| 34. |
朱小红, 张云, 刘美玲, 等. GhostNet轻量级网络在糖尿病视网膜病变诊断中的应用价值. 首都医科大学学报, 2024, 45(4): 678-685.
|
| 35. |
张子振, 刘明, 朱德江. 融合注意力机制和高效网络的糖尿病视网膜病变识别与分类. 中国图象图形学报, 2020, 25(8): 1708-1718.
|
| 36. |
高韶晖, 金学民, 赵朝霞, 等. 糖尿病视网膜病变人工智能机器人辅助诊断系统的建立及应用. 中华实验眼科杂志, 2019, 37(8): 669-673.
|
| 37. |
Teo ZL, Tham YC, Yu M, et al. Global prevalence of diabetic retinopathy and projection of burden through 2045: systematic review and meta-analysis. Ophthalmology, 2021, 128(11): 1580-1591.
|
| 38. |
Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol, 2018, 14(2): 88-98.
|
| 39. |
倪家远. 基于决策树的糖尿病诊断专家系统的研究与设计. 合肥: 安徽工业大学, 2016.
|
| 40. |
Shan Y, Xu Y, Lin X, et al. Burden of vision loss due to diabetic retinopathy in China from 1990 to 2017: findings from the global burden of disease study. Acta Ophthalmol, 2021, 99(2): e267-e273.
|
| 41. |
Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA, 2016, 316(22): 2402-2410.
|
| 42. |
Raumviboonsuk P, Krause J, Chotcomwongse P, et al. Deep learning versus human graders for classifying diabetic retinopathy severity in a nationwide screening program. NPJ Digit Med, 2019, 2: 25.
|
| 43. |
陈明惠, 王子昂, 李家昱, 等. 基于人工智能辅助糖尿病视网膜病变分类研究. 激光与光电子学进展, 2025, (12): 1-21.
|
| 44. |
杨雨帆, 袁立明, 王珂, 等. 基于图卷积网络的糖尿病视网膜病变分级模型. 计算机科学, 2024, 51(S2): 461-465.
|
| 45. |
郭莹, 李绍杰. 基于小尺度跨层融合模型的糖尿病视网膜病变分类方法. 生物医学工程学杂志, 2024, 41(5): 861-868.
|
| 46. |
Ting DSW, Cheung CY, Lim G, et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA, 2017, 318(22): 2211-2223.
|
| 47. |
Dai L, Wu L, Li H, et al. A deep learning system for detecting diabetic retinopathy across the disease spectrum. Nat Commun, 2021, 12(1): 3242.
|
| 48. |
Arcadu F, Benmansour F, Maunz A, et al. Deep learning algorithm predicts diabetic retinopathy progression in individual patients. NPJ Digit Med, 2019, 2: 92.
|
| 49. |
Dai L, Sheng B, Chen T, et al. A deep learning system for predicting time to progression of diabetic retinopathy. Nat Med, 2024, 30(2): 584-594.
|