Citation: 吴倩, 肖波. 癫痫导致认知功能障碍的生物学机制. Journal of Epilepsy, 2015, 1(1): 64-69. doi: 10.7507/2096-0247.20150010 Copy
Copyright © the editorial department of Journal of Epilepsy of West China Medical Publisher. All rights reserved
1. | van Diessen E, Diederen SJ, Braun KP,et al. Functional and structural brain networks in epilepsy:what have we learned? Epilepsia, 2013,54(11):1855-1865. |
2. | Doesburg SM, Ibrahim GM, Smith ML,et al. Altered Rolandic gamma-band activation associated with motor impairment and ictal network desynchronization in childhood epilepsy. PLoS One, 2013, 8(1):e54943. |
3. | Akiyama T, McCoy B, Go CY, et al. Focal resection of fast ripples on extraoperative intracranial EEG improves seizure outcome in pediatric epilepsy. Epilepsia, 2011,52(10):1802-1811. |
4. | Kanner AM, A Soto, H Gross-Kanner.Prevalence and clinical characteristics of postictal psychiatric symptoms in partial epilepsy. Neurology, 2004, 62(5):708-713. |
5. | Cardoso A, Carvalho LS, Lukoyanova EA, et al. Effects of repeated electroconvulsive shock seizures and pilocarpine-induced status epilepticus on emotional behavior in the rat. Epilepsy Behav, 2009, 14(2):293-299. |
6. | Ebus S, Arends J, Hendriksen J, et al. Cognitive effects of interictal epileptiform discharges in children. Eur J Paediatr Neurol, 2012, 16(6):697-706. |
7. | Van Bogaert P, Urbain C, Galer S, et al. Impact of focal interictal epileptiform discharges on behaviour and cognition in children. Neurophysiol Clin, 2012, 42(1-2):53-58. |
8. | Kleen JK, Scott RC, Holmes GL, et al. Hippocampal interictal epileptiform activity disrupts cognition in humans. Neurology, 2013, 81(1):18-24. |
9. | Filippini M, Boni A, Giannotta M, et al. Neuropsychological development in children belonging to BECTS spectrum:long-term effect of epileptiform activity. Epilepsy Behav, 2013, 28(3):504-511. |
10. | Staley KJ, A White, FE Dudek. Interictal spikes:harbingers or causes of epilepsy? Neurosci Lett, 2011, 497(3):247-250. |
11. | Kleen JK, Scott RC, Holmes GL, et al. Hippocampal interictal spikes disrupt cognition in rats. Ann Neurol, 2010,67(2):250-257. |
12. | Alvarez PS, Simao F, Hemb M, et al. Effects of undernourishment, recurrent seizures and enriched environment during early life in hippocampal morphology. Int J Dev Neurosci, 2014, 33:81-87. |
13. | Karnam HB, Zhou JL, Huang LT, et al. Early life seizures cause long-standing impairment of the hippocampal map. Exp Neurol, 2009, 217(2):378-387. |
14. | Fournier NM, Botterill JJ, Marks WN, et al. Impaired recruitment of seizure-generated neurons into functional memory networks of the adult dentate gyrus following long-term amygdala kindling. Exp Neurol, 2013, 244:96-104. |
15. | Tuchscherer V, Seidenberg M, Pulsipher D, et al. Extrahippocampal integrity in temporal lobe epilepsy and cognition:thalamus and executive functioning. Epilepsy Behav, 2010,17(4):478-482. |
16. | Zhang L, XP Luo. Plasticity and metaplasticity of lateral perforant path in hippocampal dentate gyrus in a rat model of febrile seizure. Sheng Li Xue Bao, 2011, 63(2):124-130. |
17. | Bandopadhyay R, Liu JY, Sisodiya SM, et al. A comparative study of the dentate gyrus in hippocampal sclerosis in epilepsy and dementia. Neuropathol Appl Neurobiol, 2014, 40(2):177-190. |
18. | Trotta N, Goldman S, Legros B, et al. Changes in functional integration with the non-epileptic temporal lobe of patients with unilateral mesiotemporal epilepsy. PLoS One, 2013, 8(6):e67053. |
19. | Casanova JR, M Nishimura, JW Swann. The effects of early-life seizures on hippocampal dendrite development and later-life learning and memory. Brain Res Bull, 2014, 103:39-48. |
20. | Wong M, D Guo. Dendritic spine pathology in epilepsy:cause or consequence? Neuroscience, 2013, 251:141-150. |
21. | Nishimura M, X Gu, JW Swann. Seizures in early life suppress hippocampal dendrite growth while impairing spatial learning. Neurobiol Dis, 2011, 44(2):205-214. |
22. | Gutierrez-Galve L, Flugel D, Thompson PJ, et al. Cortical abnormalities and their cognitive correlates in patients with temporal lobe epilepsy and interictal psychosis. Epilepsia, 2012, 53(6):1077-1087. |
23. | Widjaja E, Mahmoodabadi SZ, Snead OC, et al. Widespread cortical thinning in children with frontal lobe epilepsy. Epilepsia, 2011, 52(9):1685-1691. |
24. | Hellwig S, Gutmann V, Trimble MR, et al. Cerebellar volume is linked to cognitive function in temporal lobe epilepsy:a quantitative MRI study. Epilepsy Behav, 2013, 28(2):156-162. |
25. | Widjaja E, Skocic J, Go C, et al. Abnormal white matter correlates with neuropsychological impairment in children with localization-related epilepsy. Epilepsia, 2013, 54(6):1065-1073. |
26. | O'Muircheartaigh J, Richardson MP. Epilepsy and the frontal lobes. Cortex, 2011, 48(2):144-155. |
27. | Vaessen MJ, Jansen JF, Vlooswijk MC, et al. White matter network abnormalities are associated with cognitive decline in chronic epilepsy. Cereb Cortex, 2012, 22(9):2139-2147. |
28. | Yang T, Guo Z, Luo C, et al. White matter impairment in the basal ganglia-thalamocortical circuit of drug-naive childhood absence epilepsy. Epilepsy Res, 2012, 99(3):267-273. |
29. | Danielson NB, Guo JN, Blumenfeld H. The default mode network and altered consciousness in epilepsy. Behav Neurol, 2011,24(1):55-65. |
30. | Widjaja E, Zamyadi M, Raybaud C, et al. Impaired default mode network on resting-state FMRI in children with medically refractory epilepsy. AJNR Am J Neuroradiol, 2013, 34(3):552-557. |
31. | Zeng H, Pizarro R, Nair VA, et al. Alterations in regional homogeneity of resting-state brain activity in mesial temporal lobe epilepsy. Epilepsia, 2013, 54(4):658-666. |
32. | Luo C, Li Q, Lai Y, et al. Altered functional connectivity in default mode network in absence epilepsy:a resting-state fMRI study. Hum Brain Mapp, 2011, 32(3):438-449. |
33. | Mason RA, Prat CS, Just MA. Neurocognitive brain response to transient impairment of Wernicke's area. Cereb Cortex, 2014,24(6):1474-1484. |
34. | Wandschneider B, Thompson PJ, Vollmar C, et al. Frontal lobe function and structure in juvenile myoclonic epilepsy:a comprehensive review of neuropsychological and imaging data. Epilepsia, 2013, 53(12):2091-2098. |
35. | Bonilha L, Tabesh A, Dabbs K, et al. Neurodevelopmental alterations of large-scale structural networks in children with new-onset epilepsy. Hum Brain Mapp, 2014, 35(8):3661-3672. |
36. | Vlooswijk MC, Vaessen MJ, Jansen JF, et al. Loss of network efficiency associated with cognitive decline in chronic epilepsy. Neurology, 2011, 77(10):938-944. |
37. | van Elburg RA, van Ooyen A. Impact of dendritic size and dendritic topology on burst firing in pyramidal cells. PLoS Comput Biol, 2010, 6(5):e1000781. |
38. | Ge YX, Liu Y, Tang HY, et al. ClC-2 contributes to tonic inhibition mediated by alpha5 subunit-containing GABA(A) receptor in experimental temporal lobe epilepsy. Neuroscience, 2011, 186:120-127. |
39. | Swann JW, Le JT, Lam TT. The impact of chronic network hyperexcitability on developing glutamatergic synapses. Eur J Neurosci, 2007, 26(4):975-991. |
40. | Swann JW, Le JT, Lee CL. Recurrent seizures and the molecular maturation of hippocampal and neocortical glutamatergic synapses. Dev Neurosci, 2007, 29(1-2):168-178. |
41. | Gigout S, Jones GA, Wierschke S, et al. Distinct muscarinic acetylcholine receptor subtypes mediate pre- and postsynaptic effects in rat neocortex. BMC Neurosci, 2012, 13:42. |
42. | Gigout S, Wierschke S, Lehmann TN, et al. Muscarinic acetylcholine receptor-mediated effects in slices from human epileptogenic cortex. Neuroscience, 2012, 223:399-411. |
43. | Bhowmik M, Khanam R, Vohora D. Histamine H3 receptor antagonists in relation to epilepsy and neurodegeneration:a systemic consideration of recent progress and perspectives. Br J Pharmacol, 2012, 167(7):1398-1414. |
44. | Zhang W, Peterson M, Beyer B, et al. Loss of MeCP2 from forebrain excitatory neurons leads to cortical hyperexcitation and seizures. J Neurosci, 2014, 34(7):2754-2763. |
45. | Kang JQ, Shen W, Lee M, et al. Slow degradation and aggregation in vitro of mutant GABAA receptor gamma2(Q351X) subunits associated with epilepsy. J Neurosci, 2010, 30(41):13895-13905. |
46. | Gu F, Hazra A, Aulakh A, et al. Purinergic control of hippocampal circuit hyperexcitability in Dravet syndrome. Epilepsia, 2014, 55(2):245-255. |
47. | Mares J, Stopka P, Nohejlova K, et al. Oxidative stress induced by epileptic seizure and its attenuation by melatonin. Physiol Res, 2013, 62 (Suppl 1):67-74. |
48. | Yang J, Liu Z, Xie Y, et al. Peroxynitrite alters GABAergic synaptic transmission in immature rat hippocampal slices. Neurosci Res, 2013, 75(3):210-217. |
49. | Cognato GP, Vuaden FC, Savio LE, et al. Nucleoside triphosphate diphosphohydrolases role in the pathophysiology of cognitive impairment induced by seizure in early age. Neuroscience, 2011, 180:191-200. |
50. | Marini C, Darra F, Specchio N, et al. Focal seizures with affective symptoms are a major feature of PCDH19 gene-related epilepsy. Epilepsia, 2012, 53(12):2111-2119. |
51. | Henshall DC, Engel T. Contribution of apoptosis-associated signaling pathways to epileptogenesis:lessons from Bcl-2 family knockouts. Front Cell Neurosci, 2013, 7:110. |
52. | Stein JL, Medland SE, Vasquez AA, et al. Identification of common variants associated with human hippocampal and intracranial volumes. Nat Genet, 2012, 44(5):552-561. |
53. | Henshall DC. MicroRNAs in the pathophysiology and treatment of status epilepticus. Front Mol Neurosci, 2013, 6:37. |
54. | Lubin FD. Epigenetic gene regulation in the adult mammalian brain:multiple roles in memory formation. Neurobiol Learn Mem, 2011, 96(1):68-78. |
55. | Galanopoulou AS, Gorter JA, Cepeda C. Finding a better drug for epilepsy:the mTOR pathway as an antiepileptogenic target. Epilepsia, 2012, 53(7):1119-1130. |
56. | Kazdoba TM, Sunnen CN, Crowell B, et al. Development and characterization of NEX-Pten, a novel forebrain excitatory neuron-specific knockout mouse. Dev Neurosci, 2012, 34(2-3):198-209. |
57. | Corradini I, Donzelli A, Antonucci F, et al. Epileptiform activity and cognitive deficits in SNAP-25(+/-) mice are normalized by antiepileptic drugs. Cereb Cortex, 2014, 24(2):364-376. |
- 1. van Diessen E, Diederen SJ, Braun KP,et al. Functional and structural brain networks in epilepsy:what have we learned? Epilepsia, 2013,54(11):1855-1865.
- 2. Doesburg SM, Ibrahim GM, Smith ML,et al. Altered Rolandic gamma-band activation associated with motor impairment and ictal network desynchronization in childhood epilepsy. PLoS One, 2013, 8(1):e54943.
- 3. Akiyama T, McCoy B, Go CY, et al. Focal resection of fast ripples on extraoperative intracranial EEG improves seizure outcome in pediatric epilepsy. Epilepsia, 2011,52(10):1802-1811.
- 4. Kanner AM, A Soto, H Gross-Kanner.Prevalence and clinical characteristics of postictal psychiatric symptoms in partial epilepsy. Neurology, 2004, 62(5):708-713.
- 5. Cardoso A, Carvalho LS, Lukoyanova EA, et al. Effects of repeated electroconvulsive shock seizures and pilocarpine-induced status epilepticus on emotional behavior in the rat. Epilepsy Behav, 2009, 14(2):293-299.
- 6. Ebus S, Arends J, Hendriksen J, et al. Cognitive effects of interictal epileptiform discharges in children. Eur J Paediatr Neurol, 2012, 16(6):697-706.
- 7. Van Bogaert P, Urbain C, Galer S, et al. Impact of focal interictal epileptiform discharges on behaviour and cognition in children. Neurophysiol Clin, 2012, 42(1-2):53-58.
- 8. Kleen JK, Scott RC, Holmes GL, et al. Hippocampal interictal epileptiform activity disrupts cognition in humans. Neurology, 2013, 81(1):18-24.
- 9. Filippini M, Boni A, Giannotta M, et al. Neuropsychological development in children belonging to BECTS spectrum:long-term effect of epileptiform activity. Epilepsy Behav, 2013, 28(3):504-511.
- 10. Staley KJ, A White, FE Dudek. Interictal spikes:harbingers or causes of epilepsy? Neurosci Lett, 2011, 497(3):247-250.
- 11. Kleen JK, Scott RC, Holmes GL, et al. Hippocampal interictal spikes disrupt cognition in rats. Ann Neurol, 2010,67(2):250-257.
- 12. Alvarez PS, Simao F, Hemb M, et al. Effects of undernourishment, recurrent seizures and enriched environment during early life in hippocampal morphology. Int J Dev Neurosci, 2014, 33:81-87.
- 13. Karnam HB, Zhou JL, Huang LT, et al. Early life seizures cause long-standing impairment of the hippocampal map. Exp Neurol, 2009, 217(2):378-387.
- 14. Fournier NM, Botterill JJ, Marks WN, et al. Impaired recruitment of seizure-generated neurons into functional memory networks of the adult dentate gyrus following long-term amygdala kindling. Exp Neurol, 2013, 244:96-104.
- 15. Tuchscherer V, Seidenberg M, Pulsipher D, et al. Extrahippocampal integrity in temporal lobe epilepsy and cognition:thalamus and executive functioning. Epilepsy Behav, 2010,17(4):478-482.
- 16. Zhang L, XP Luo. Plasticity and metaplasticity of lateral perforant path in hippocampal dentate gyrus in a rat model of febrile seizure. Sheng Li Xue Bao, 2011, 63(2):124-130.
- 17. Bandopadhyay R, Liu JY, Sisodiya SM, et al. A comparative study of the dentate gyrus in hippocampal sclerosis in epilepsy and dementia. Neuropathol Appl Neurobiol, 2014, 40(2):177-190.
- 18. Trotta N, Goldman S, Legros B, et al. Changes in functional integration with the non-epileptic temporal lobe of patients with unilateral mesiotemporal epilepsy. PLoS One, 2013, 8(6):e67053.
- 19. Casanova JR, M Nishimura, JW Swann. The effects of early-life seizures on hippocampal dendrite development and later-life learning and memory. Brain Res Bull, 2014, 103:39-48.
- 20. Wong M, D Guo. Dendritic spine pathology in epilepsy:cause or consequence? Neuroscience, 2013, 251:141-150.
- 21. Nishimura M, X Gu, JW Swann. Seizures in early life suppress hippocampal dendrite growth while impairing spatial learning. Neurobiol Dis, 2011, 44(2):205-214.
- 22. Gutierrez-Galve L, Flugel D, Thompson PJ, et al. Cortical abnormalities and their cognitive correlates in patients with temporal lobe epilepsy and interictal psychosis. Epilepsia, 2012, 53(6):1077-1087.
- 23. Widjaja E, Mahmoodabadi SZ, Snead OC, et al. Widespread cortical thinning in children with frontal lobe epilepsy. Epilepsia, 2011, 52(9):1685-1691.
- 24. Hellwig S, Gutmann V, Trimble MR, et al. Cerebellar volume is linked to cognitive function in temporal lobe epilepsy:a quantitative MRI study. Epilepsy Behav, 2013, 28(2):156-162.
- 25. Widjaja E, Skocic J, Go C, et al. Abnormal white matter correlates with neuropsychological impairment in children with localization-related epilepsy. Epilepsia, 2013, 54(6):1065-1073.
- 26. O'Muircheartaigh J, Richardson MP. Epilepsy and the frontal lobes. Cortex, 2011, 48(2):144-155.
- 27. Vaessen MJ, Jansen JF, Vlooswijk MC, et al. White matter network abnormalities are associated with cognitive decline in chronic epilepsy. Cereb Cortex, 2012, 22(9):2139-2147.
- 28. Yang T, Guo Z, Luo C, et al. White matter impairment in the basal ganglia-thalamocortical circuit of drug-naive childhood absence epilepsy. Epilepsy Res, 2012, 99(3):267-273.
- 29. Danielson NB, Guo JN, Blumenfeld H. The default mode network and altered consciousness in epilepsy. Behav Neurol, 2011,24(1):55-65.
- 30. Widjaja E, Zamyadi M, Raybaud C, et al. Impaired default mode network on resting-state FMRI in children with medically refractory epilepsy. AJNR Am J Neuroradiol, 2013, 34(3):552-557.
- 31. Zeng H, Pizarro R, Nair VA, et al. Alterations in regional homogeneity of resting-state brain activity in mesial temporal lobe epilepsy. Epilepsia, 2013, 54(4):658-666.
- 32. Luo C, Li Q, Lai Y, et al. Altered functional connectivity in default mode network in absence epilepsy:a resting-state fMRI study. Hum Brain Mapp, 2011, 32(3):438-449.
- 33. Mason RA, Prat CS, Just MA. Neurocognitive brain response to transient impairment of Wernicke's area. Cereb Cortex, 2014,24(6):1474-1484.
- 34. Wandschneider B, Thompson PJ, Vollmar C, et al. Frontal lobe function and structure in juvenile myoclonic epilepsy:a comprehensive review of neuropsychological and imaging data. Epilepsia, 2013, 53(12):2091-2098.
- 35. Bonilha L, Tabesh A, Dabbs K, et al. Neurodevelopmental alterations of large-scale structural networks in children with new-onset epilepsy. Hum Brain Mapp, 2014, 35(8):3661-3672.
- 36. Vlooswijk MC, Vaessen MJ, Jansen JF, et al. Loss of network efficiency associated with cognitive decline in chronic epilepsy. Neurology, 2011, 77(10):938-944.
- 37. van Elburg RA, van Ooyen A. Impact of dendritic size and dendritic topology on burst firing in pyramidal cells. PLoS Comput Biol, 2010, 6(5):e1000781.
- 38. Ge YX, Liu Y, Tang HY, et al. ClC-2 contributes to tonic inhibition mediated by alpha5 subunit-containing GABA(A) receptor in experimental temporal lobe epilepsy. Neuroscience, 2011, 186:120-127.
- 39. Swann JW, Le JT, Lam TT. The impact of chronic network hyperexcitability on developing glutamatergic synapses. Eur J Neurosci, 2007, 26(4):975-991.
- 40. Swann JW, Le JT, Lee CL. Recurrent seizures and the molecular maturation of hippocampal and neocortical glutamatergic synapses. Dev Neurosci, 2007, 29(1-2):168-178.
- 41. Gigout S, Jones GA, Wierschke S, et al. Distinct muscarinic acetylcholine receptor subtypes mediate pre- and postsynaptic effects in rat neocortex. BMC Neurosci, 2012, 13:42.
- 42. Gigout S, Wierschke S, Lehmann TN, et al. Muscarinic acetylcholine receptor-mediated effects in slices from human epileptogenic cortex. Neuroscience, 2012, 223:399-411.
- 43. Bhowmik M, Khanam R, Vohora D. Histamine H3 receptor antagonists in relation to epilepsy and neurodegeneration:a systemic consideration of recent progress and perspectives. Br J Pharmacol, 2012, 167(7):1398-1414.
- 44. Zhang W, Peterson M, Beyer B, et al. Loss of MeCP2 from forebrain excitatory neurons leads to cortical hyperexcitation and seizures. J Neurosci, 2014, 34(7):2754-2763.
- 45. Kang JQ, Shen W, Lee M, et al. Slow degradation and aggregation in vitro of mutant GABAA receptor gamma2(Q351X) subunits associated with epilepsy. J Neurosci, 2010, 30(41):13895-13905.
- 46. Gu F, Hazra A, Aulakh A, et al. Purinergic control of hippocampal circuit hyperexcitability in Dravet syndrome. Epilepsia, 2014, 55(2):245-255.
- 47. Mares J, Stopka P, Nohejlova K, et al. Oxidative stress induced by epileptic seizure and its attenuation by melatonin. Physiol Res, 2013, 62 (Suppl 1):67-74.
- 48. Yang J, Liu Z, Xie Y, et al. Peroxynitrite alters GABAergic synaptic transmission in immature rat hippocampal slices. Neurosci Res, 2013, 75(3):210-217.
- 49. Cognato GP, Vuaden FC, Savio LE, et al. Nucleoside triphosphate diphosphohydrolases role in the pathophysiology of cognitive impairment induced by seizure in early age. Neuroscience, 2011, 180:191-200.
- 50. Marini C, Darra F, Specchio N, et al. Focal seizures with affective symptoms are a major feature of PCDH19 gene-related epilepsy. Epilepsia, 2012, 53(12):2111-2119.
- 51. Henshall DC, Engel T. Contribution of apoptosis-associated signaling pathways to epileptogenesis:lessons from Bcl-2 family knockouts. Front Cell Neurosci, 2013, 7:110.
- 52. Stein JL, Medland SE, Vasquez AA, et al. Identification of common variants associated with human hippocampal and intracranial volumes. Nat Genet, 2012, 44(5):552-561.
- 53. Henshall DC. MicroRNAs in the pathophysiology and treatment of status epilepticus. Front Mol Neurosci, 2013, 6:37.
- 54. Lubin FD. Epigenetic gene regulation in the adult mammalian brain:multiple roles in memory formation. Neurobiol Learn Mem, 2011, 96(1):68-78.
- 55. Galanopoulou AS, Gorter JA, Cepeda C. Finding a better drug for epilepsy:the mTOR pathway as an antiepileptogenic target. Epilepsia, 2012, 53(7):1119-1130.
- 56. Kazdoba TM, Sunnen CN, Crowell B, et al. Development and characterization of NEX-Pten, a novel forebrain excitatory neuron-specific knockout mouse. Dev Neurosci, 2012, 34(2-3):198-209.
- 57. Corradini I, Donzelli A, Antonucci F, et al. Epileptiform activity and cognitive deficits in SNAP-25(+/-) mice are normalized by antiepileptic drugs. Cereb Cortex, 2014, 24(2):364-376.
-
Previous Article
脑靶向纳米系统及其在癫痫诊治中的应用 -
Next Article
自身免疫性脑炎相关性癫痫发作的研究进展