流行病学数据和基因关联研究表明,遗传易感性是后天脑损伤(如脑外伤)后发展为癫痫的主要病因。因此,对遗传易感性进行深入的了解将会对疾病的早期诊断和预后,以及开发靶向抗癫痫药物(AEDs)和优化临床试验设计具有巨大的帮助。在实验室中,调查部分人群更易发展为获得性癫痫的方法是建立表现出易感性或对癫痫发生具有抵抗力的独特啮齿动物模型。本综述着重于这些模型中最具代表性的模型,即 FAST(快点燃)和 SLOW(慢点燃)大鼠品系,它们是通过选择性育种具有不同的杏仁核电点燃率筛选出来的。文章描述了这些品系在基线和脑损伤后的癫痫发作特征、神经解剖学和神经行为表型的不同之处,被证明可用于识别与癫痫发作易感性和精神类疾病合并症相关的常见的病理异常。值得注意的是,尽管在多个生物学过程中获得的品系数据差异可说明部分人群更易发生癫痫的原因,但仍需进一步研究以确定确切的分子和遗传危险因素。FAST 和 SLOW 大鼠品系以及其他类似的实验模型,是研究遗传背景对发展为获得性癫痫风险以及癫痫发展与相关合并症之间关系的宝贵的神经生物学工具。
Citation: LeungWL, Casillas-EspinosaP, SharmaP, 张颖颖, 慕洁. 获得性癫痫的遗传易感性的动物模型:快点燃和慢点燃大鼠. Journal of Epilepsy, 2020, 6(4): 354-365. doi: 10.7507/2096-0247.20200058 Copy
Copyright © the editorial department of Journal of Epilepsy of West China Medical Publisher. All rights reserved
1. | Engel J Jr. Introduction to temporal lobe epilepsy. Epilepsy Res, 1996, 26(1): 141-150. |
2. | Thomas RH, Berkovic SF. The hidden genetics of epilepsy‐a clinically important new paradigm. Nat Rev Neurol, 2014, 10(5): 283-292. |
3. | Pitkänen A, Sutula T. Is epilepsy a progressive disorder? Prospects for new therapeutic approaches in temporal‐lobe epilepsy. Lancet Neurol, 2002, 1(3): 173-181. |
4. | Powell K, Lukasiuk K, O'Brien T, et al. Are alterations in transmitter receptor and ion channel expression responsible for epilepsies? Adv Exp Med Biol, 2014, 2014, 813: 211-229. |
5. | Herman ST. Epilepsy after brain insult: targeting epileptogenesis. Neurology, 2002, 59(Suppl 5): 21-26. |
6. | Lowenstein DH. Recent advances related to basic mechanisms of epileptogenesis. Epilepsy Res, 1996, 11(Suppl): 45-60. |
7. | Löscher W. Animal models of seizures and epilepsy: past, present, and future role for the discovery of antiseizure drugs. Neurochem Res, 2017, 42(7): 1873-1888. |
8. | Brooks Kayal A, Raol Y, Russek S. Alteration of epileptogenesis genes. Neurotherapeutics, 2009, 6(2): 312-318. |
9. | Christensen J, Pedersen MG, Pedersen CB, et al. Long‐term risk of epilepsy after traumatic brain injury in children and young adults: a population‐based cohort study. Lancet, 2009, 373(9669): 1105-1110. |
10. | Kobow K, Auvin S, Jensen F, et al. Finding a better drug for epilepsy: antiepileptogenesis targets. Epilepsia, 2012, 53(11): 1868-1876. |
11. | McNamara JO, Huang YZ, Leonard AS. Molecular signaling mechanisms underlying epileptogenesis. Sci STKE, 2006: re12. |
12. | Ritter A, Kammerer C, Brooks M, et al. Genetic variation in neuronal glutamate transport genes and associations with posttraumatic seizure. Epilepsia, 2016, 57(6): 984-993. |
13. | Arion D, Sabatini M, Unger T, et al. Correlation of transcriptome profile with electrical activity in temporal lobe epilepsy. Neurobiol Dis, 2006, 22(2): 374-387. |
14. | Berkovic S, Mulley J, Scheffer I, et al. Human epilepsies: interaction of genetic and acquired factors. Trends Neurosci, 2006, 29(7): 391-397. |
15. | Diamond M, Ritter A, Jackson E, et al. Genetic variation in the adenosine regulatory cycle is associated with posttraumatic epilepsy development. Epilepsia, 2015, 56(8): 1198-1206. |
16. | Cotter D, Kelso A, Neligan A. Genetic biomarkers of posttraumatic epilepsy: a systematic review. Seizure, 2017, 46: 53-58. |
17. | Racine RJ, Steingart M, McIntyre DC. Development of kindlingprone and kindling‐resistant rats: selective breeding and electrophysiological studies. Epilepsy Res, 1999, 35(3): 183-195. |
18. | Rimoin DL, Metrakos JD. The genetics of convulsive disorders in the families of hemiplegics. Proc 2nd Intern Congr Hum Genet. Rome: Institute G. Mendel, 1963: 1655-1658. |
19. | Darrah SD, Miller MA, Ren D, et al. Genetic variability in glutamic acid decarboxylase genes: associations with post‐traumatic seizures after severe TBI. Epilepsy Res, 2013, 103(2-3): 180-194. |
20. | Scher AI, Wu H, Tsao JW, et al. MTHFR C677T genotype as a risk factor for epilepsy including post‐traumatic epilepsy in a representative military cohort. J Neurotrauma, 2011, 28(9): 1739-1745. |
21. | Wagner AK, Miller MA, Scanlon J, et al. Adenosine A1 receptor gene variants associated with post‐traumatic seizures after severe TBI. Epilepsy Res, 2010, 90(3): 259-272. |
22. | Kuo PH, Kalsi G, Prescott CA, et al. Associations of glutamate decarboxylase genes with initial sensitivity and age‐at‐onset of alcohol dependence in the Irish Affected Sib Pair Study of Alcohol Dependence. Drug Alcohol Depend, 2009, 101(1-2): 80-87. |
23. | Franklin PH, Zhang G, Tripp ED, et al. Adenosine A1 receptor activation mediates suppression of (‐) bicuculline methiodide‐induced seizures in rat prepiriform cortex. J Pharmacol Exp Ther, 1989, 251: 1229-1236. |
24. | Alyu F, Dikmen M. Inflammatory aspects of epileptogenesis: contribution of molecular inflammatory mechanisms. Acta Neuropsychiatr, 2017, 29(1): 1-16. |
25. | Saletti P, Ali I, Casillas Espinosa P, et al. In search of antiepileptogenic treatments for post‐traumatic epilepsy. Neurobiol Dis, 2018, 123: 86-99. |
26. | Fu CY, Chen SJ, Cai NH, et al. Increased risk of post‐stroke epilepsy in Chinese patients with a TRPM6 polymorphism. Neurol Res, 2019, 41(4): 378-383. |
27. | Yang H, Song Z, Yang GP, et al. The ALDH2 rs671 polymorphism affects post‐stroke epilepsy susceptibility and plasma 4‐HNE levels. PLoS ONE, 2014, 9: e109634. |
28. | Szyndler J, Maciejak P, Turzynska D, et al. The effects of electrical hippocampal kindling of seizures on amino acids and kynurenic acid concentrations in brain structures. J Neural Transm (Vienna), 2012, 119: 141-149. |
29. | Morimoto K, Fahnestock M, Racine RJ. Kindling and status epilepticus models of epilepsy: rewiring the brain. Prog Neurobiol, 2004, 73(1): 1-60. |
30. | Racine RJ. Modification of seizure activity by electrical stimulation. II. Motor Seizure. Electroencephalogr Clin Neurophysiol, 1972, 32(3): 281-294. |
31. | McIntyre DC, Kent P, Hayley S, et al. Influence of psychogenic and neurogenic stressors on neuroendocrine and central monoamine activity in fast and slow kindling rats. Brain Res, 1999, 840(1-2): 65-74. |
32. | Racine RJ, Burnham WM, Gartner JG, et al. Rates of motor seizure development in rats subjected to electrical brain stimulation: strain and inter‐stimulation interval effects. Electroencephalogr Clin Neurophysiol, 1973, 35(5): 553-556. |
33. | McIntyre DC, Kelly ME, Dufresne C. FAST and SLOW amygdala kindling rat strains: comparison of amygdala, hippocampal, piriform and perirhinal cortex kindling. Epilepsy Res, 1999, 35(3): 197-209. |
34. | Baker BL, Neece CL, Fenning RM, et al. Mental disorders in five‐year‐old children with or without developmental delay: focus on ADHD. J Clin Child Adolesc Psychol, 2010, 39(4): 492-505. |
35. | Lane A, Harpster K, Heathcock J. Motor characteristics of young children referred for possible autism spectrum disorder. Pediatr Phys Ther, Spring, 2012, 24(1): 21-29. |
36. | Plioplys S, Dunn DW, Caplan R. 10‐year research update review: psychiatric problems in children with epilepsy. J Am Acad Child Adolesc Psychiatry, 2007, 46(11): 1389-1402. |
37. | Sharma P, Powell KL, Wlodek ME, et al. Delayed myelination and neurodevelopment in male seizureprone versus seizure‐resistant rats. Epilepsia, 2018, 59(4): 753-764. |
38. | Ciesielski KT, Harris RJ, Hart BL, et al. Cerebellar hypoplasia and frontal lobe cognitive deficits in disorders of early childhood. Neuropsychologia, 1997, 35: 643-655. |
39. | Hardan AY, Minshew NJ, Mallikarjuhn M, et al. Brain volume in autism. J Child Neurol, 2001, 16(6): 421-424. |
40. | Hardan AY, Pabalan M, Gupta N, et al. Corpus callosum volume in children with autism. Psychiatry Res, 2009, 174(1): 57-61. |
41. | Valera EM, Faraone SV, Murray KE, et al. Meta‐analysis of structural imaging findings in attention‐deficit/hyperactivity disorder. Biol Psychiatry, 2007, 61(12): 1361-1369. |
42. | Mohapel P, McIntyre DC. Amygdala kindling‐resistant (SLOW) or ‐prone (FAST) rat strains show differential fear responses. Behav Neurosci, 1998, 112(6): 1402-1413. |
43. | Gilby KL, Thorne V, Patey A, et al. Ruling out postnatal origins to attention‐deficit/hyperactivity disorder (ADHD)like behaviors in a seizure‐prone rat strain. Behav Neurosci, 2007, 121(2): 370-379. |
44. | Sharma P, Dedeurwaerdere S, Vandenberg MA, et al. Neuroanatomical differences in FAST and SLOW rat strains with differential vulnerability to kindling and behavioral comorbidities. Epilepsy Behav, 2016, 65: 42-48. |
45. | Anisman H, Lu ZW, Song C, et al. Influence of psychogenic and neurogenic stressors on endocrine and immune activity: differential effects in fast and slow seizing rat strains. Brain Behav Immun, 1997, 11(1): 63-74. |
46. | Merali Z, Kent P, Michaud D, et al. Differential impact of predator or immobilization stressors on central corticotropinreleasing hormone and bombesin‐like peptides in Fast and Slow seizing rat. Brain Res, 2001, 906(1-2): 60-73. |
47. | Azarbar A, McIntyre DC, Gilby KL. Caloric restriction alters seizure disposition and behavioral profiles in seizure‐prone (fast) versus seizure‐resistant (slow) rats. Behav Neurosci, 2010, 124(1): 106-114. |
48. | Michaud DM, McIntyre DC. Anisman H, et al Rat strains with high vs. low sexual reactivity: behavioral and lateralized amygdaloid CRH responses of males. Soc Neurosci Abstr, 1999, 25: 346. |
49. | McIntyre DC, Gilby KL. Genetically seizure‐prone or seizure‐resistant phenotypes and their associated behavioral comorbidities. Epilepsia, 2007, 48(Suppl 9): 30-32. |
50. | Anisman H, McIntyre DC. Conceptual, spatial, and cue learning in the Morris water maze in fast or slow kindling rats: attention deficit comorbidity. J Neurosci, 2002, 22(17): 7809-7817. |
51. | McIntyre DC, McLeod WS, Anisman H. Working and reference memory in seizure‐prone and seizure‐resistant rats: impact of amygdala kindling. Behav Neurosci, 2004, 118(2): 314-323. |
52. | McLeod WSM, McIntyre DC. The effects of amygdala kindling on t‐maze performance in epileptogenetically fast and slow kindling rat strains. Soc Neurosci Abstr, 1995, 21: 2115. |
53. | Reinhart CJ, Pellis SM, McIntyre DC. Development of play fighting in kindling‐prone (FAST) and kindling‐resistant (SLOW) rats: how does the retention of phenotypic juvenility affect the complexity of play? Dev Psychobiol, 2004, 45(2): 83-92. |
54. | Gilby KL. A new rat model for vulnerability to epilepsy and autism spectrum disorders. Epilepsia, 2008, 49(Suppl 8): 108-110. |
55. | Shultz SR, Aziz NA, Yang L, et al. Intracerebroventricular injection of propionic acid, an enteric metabolite implicated in autism, induces social abnormalities that do not differ between seizure‐prone (FAST) and seizure‐resistant (SLOW) rats. Behav Brain Res, 2015, 278: 542-548. |
56. | Sharma P, Wright DK, Johnston LA, et al. Differences in white matter structure between seizure prone (FAST) and seizure resistant (SLOW) rat strains. Neurobiol Dis, 2017, 104: 33-40. |
57. | Mercier‐Guidez E, Loas G. Polydipsia and water intoxication in 353 psychiatric inpatients: an epidemiological and psychopathological study. Eur Psychiatry, 2000, 15(5): 306-311. |
58. | Terai K, Munesue T, Hiratani M. Excessive water drinking behavior in autism. Brain Dev, 1999, 21(2): 103-106. |
59. | Okazaki M, Ito M, Kato M. Effects of polydipsia‐hyponatremia on seizures in patients with epilepsy. Psychiatry Clin Neurosci, 2007, 61(3): 330-332. |
60. | Kohl S, Heekeren K, Klosterkotter J, et al. Prepulse inhibition in psychiatric disorders-apart from schizophrenia. J Psychiatr Res, 2013, 47(4): 445-452. |
61. | Ma J, Leung LS. Effects of hippocampal partial kindling on sensory and sensorimotor gating and methamphetamine‐induced locomotion in kindling‐prone and kindling‐resistant rats. Epilepsy Behav, 2016, 58: 119-126. |
62. | Gilby KL, O'Brien TJ. Epilepsy, autism, and neurodevelopment: kindling a shared vulnerability? Epilepsy Behav, 2013, 26(3): 370-374. |
63. | Inostroza M, Cid E, Brotons‐Mas J, et al. Hippocampal‐dependent spatial memory in the water maze is preserved in an experimental model of temporal lobe epilepsy in rats. PLoS ONE, 2011, 6: e22372. |
64. | Mazarati AM, Shin D, Kwon YS, et al. Elevated plasma corticosterone level and depressive behavior in experimental temporal lobe epilepsy. Neurobiol Dis, 2009, 34(3): 457-461. |
65. | Pineda E, Jentsch JD, Shin D, et al. Behavioral impairments in rats with chronic epilepsy suggest comorbidity between epilepsy and attention deficit/hyperactivity disorder. Epilepsy Behav, 2014, 31: 267-275. |
66. | Jackson DC, Irwin W, Dabbs K, Lin JJ, et al. Ventricular enlargement in new‐onset pediatric epilepsies. Epilepsia, 2011, 52(12): 2225-2232. |
67. | Liu RS, Lemieux L, Bell GS, et al. The structural consequences of newly diagnosed seizures. Ann Neurol, 2002, 52(5): 573-580. |
68. | Malmgren K, Rydenhag B, Hallbook T. Reappraisal of corpus callosotomy. Curr Opin Neurol, 2015, 28(2): 175-181. |
69. | Vanier MT, Holm M, Ohman R, et al. Developmental profiles of gangliosides in human and rat brain. J Neurochem, 1971, 18(4): 581-592. |
70. | Lee CY, Tabesh A, Benitez A, et al. Microstructural integrity of early‐ versus late‐myelinating white matter tracts in medial temporal lobe epilepsy. Epilepsia, 2013, 54(10): 1801-1809. |
71. | Zhang Y, Zhang H, Wang L, et al. Quetiapine enhances oligodendrocyte regeneration and myelin repair after cuprizone‐induced demyelination. Schizophr Res, 2012, 138(1): 8-17. |
72. | Ma L, Yang F, Zhao R, et al. Quetiapine attenuates cognitive impairment and decreases seizure susceptibility possibly through promoting myelin development in a rat model of malformations of cortical development. Brain Res, 2015, 1622: 443-451. |
73. | Buckmaster PS, Zhang GF, Yamawaki R. Axon sprouting in a model of temporal lobe epilepsy creates a predominantly excitatory feedback circuit. J Neurosci, 2002, 22(15): 6650-6658. |
74. | Xu B, McIntyre DC, Fahnestock M, et al. Strain differences affect the induction of status epilepticus and seizure‐induced morphological changes. Eur J Neurosci, 2004, 20(2): 403-418. |
75. | Baram TZ, Ribak CE. Peptide‐induced infant status epilepticus causes neuronal death and synaptic reorganization. Neuro Report, 1995, 6(2): 277-280. |
76. | Sperber EF, Haas KZ, Stanton PK, et al. Resistance of the immature hippocampus to seizure‐induced synaptic reorganization. Brain Res Dev Brain Res, 1991, 60(1): 88-93. |
77. | Yang Y, Tandon P, Liu Z, et al. Synaptic reorganization following kainic acid‐induced seizures during development. Brain Res Dev Brain Res, 1998, 107(2): 169-177. |
78. | Racine RJ, Steingart M, Bureau Y, et al. Differential sensitivity of genetically Fast vs. Slow kindling rats strains to GABAergic convulsive agents. Neuropharmacology, 2003, 45(7): 918-924. |
79. | Schwabe K, McIntyre DC, Poulter MO. The neurosteroid THDOC differentially affects spatial behavior and anesthesia in Slow and Fast kindling rat strains. Behav Brain Res, 2007, 178: 283-292. |
80. | McIntyre DC, Poulter MO, Gilby K. Kindling: some old and some new. Epilepsy Res, 2002, 50: 79-92. |
81. | Poulter MO, Brown LA, Tynan S, et al. Differential expression of alpha1, alpha2, alpha3, and alpha5 GABAA receptor subunits in seizure‐prone and seizure‐resistant rat models of temporal lobe epilepsy. J Neurosci, 1999, 19(11): 4654-4661. |
82. | Camfield CS, Camfield PR, Gordon K, et al. Incidence of epilepsy in childhood and adolescence: a population‐based study in Nova Scotia from 1977 to 1985. Epilepsia, 1996, 37(1): 19-23. |
83. | Dunn DW, Austin JK, Huster GA. Behaviour problems in children with new‐onset epilepsy. Seizure, 1997, 6(4): 283-287. |
84. | Elmér E, Kokaia Z, Kokaia M, et al. Mossy fibre sprouting: evidence against a facilitatory role in epileptogenesis. NeuroReport, 1997, 8(5): 1193-1196. |
85. | Flynn C, Monfils MH, Kleim JA, et al. Differential neuroplastic changes in neocortical movement representations and dendritic morphology in epilepsy‐prone and epilepsy‐resistant rat strains following high‐frequency stimulation. Eur J Neurosci, 2004, 19(8): 2319-2328. |
86. | Teskey GC, Monfils MH, VandenBerg PM, et al. Motor map expansion following repeated cortical and limbic seizures is related to synaptic potentiation. Cereb Cortex, 2002, 12(1): 98-105. |
87. | Uematsu S, Lesser R, Fisher RS, et al. Motor and sensory cortex in humans: topography studied with chronic subdural stimulation. Neurosurgery, 1992, 31(1): 59-71; discussion 71-52. |
88. | Reid AY, Pittman QJ, Teskey GC. A prolonged experimental febrile seizure results in motor map reorganization in adulthood. Neurobiol Dis, 2012, 45(2): 692-700. |
89. | Lu B, Nagappan G, Lu Y. BDNF and synaptic plasticity, cognitive function, and dysfunction. Handb Exp Pharmacol, 2014, 220: 223-250. |
90. | Simonato M. Neurotrophic factors and status epilepticus. Epilepsia, 2018, 59(Suppl 2): 87-91. |
91. | Kokaia Z, Kelly ME, Elmer E, et al. Seizure‐induced differential expression of messenger RNAs for neurotrophins and their receptors in genetically fast and slow kindling rats. Neuroscience, 1996, 75(1): 197-207. |
92. | Barker‐Haliski ML, Loscher W, White HS, et al. Neuroinflammation in epileptogenesis: Insights and translational perspectives from new models of epilepsy. Epilepsia, 2017, 58(Suppl 3): 39-47. |
93. | Najjar S, Pearlman DM, Alper K, et al. Neuroinflammation and psychiatric illness. J Neuroinflammation, 2013, 10: 43. |
94. | Tisher PW, Holzer JC, Greenberg M, et al. Psychiatric presentations of epilepsy. Harv Rev Psychiatry, 1993, 1(4): 219-218. |
95. | Gilby KL, Jans J, McIntyre DC. Chronic omega‐3 supplementation in seizure‐prone versus seizure‐resistant rat strains: a cautionary tale. Neuroscience, 2009, 163(3): 750-758. |
96. | Flynn C, Brown CE, Galasso SL, et al. Zincergic innervation of the forebrain distinguishes epilepsy‐prone from epilepsy‐resistant rat strains. Neuroscience, 2007, 144(4): 1409-1414. |
97. | Gilby KL, Crino P, McIntyre DC. Neurodevelopment in seizureprone and seizure‐resistant rat strains: recognizing conflicts in management. Epilepsia, 2007, 48(Suppl 5): 114-118. |
98. | Gordon I, Grauer E, Genis I, et al. Memory deficits and cholinergic impairments in apolipoprotein E‐deficient mice. Neurosci Lett, 1995, 199(1): 1-4. |
99. | Weeber EJ, Beffert U, Jones C, et al. Reelin and ApoE receptors cooperate to enhance hippocampal synaptic plasticity and learning. J Biol Chem, 2002, 277(42): 39944-39952. |
100. | Köhling R. Voltage‐gated sodium channels in epilepsy. Epilepsia, 2002, 43(11): 1278-1295. |
101. | Hauser RM, Henshall DC, Lubin FD. The Epigenetics of epilepsy and its progression. Neuroscientist, 2018, 24(2): 186-200. |
102. | Chen T, Giri M, Xia Z, et al. Genetic and epigenetic mechanisms of epilepsy: a review. Neuropsychiatr Dis Treat, 2017, 13: 1841-1859. |
103. | Langberg T, Dashek R, Mulvey B, et al. Distinct behavioral phenotypes in novel “fast” kindlingsusceptible and “slow” kindling‐resistant rat strains selected by stimulation of the hippocampal perforant path. Neurobiol Dis, 2016, 85: 122-129. |
104. | Pitkänen A, Immonen RJ, Grohn OH, et al. From traumatic brain injury to posttraumatic epilepsy: what animal models tell us about the process and treatment options. Epilepsia, 2009, 50(Suppl 2): 21-29. |
105. | Engel J Jr, Pitkänen A, Loeb JA, et al. Epilepsy biomarkers. Epilepsia, 2013, 54(Suppl 4): 61-69. |
- 1. Engel J Jr. Introduction to temporal lobe epilepsy. Epilepsy Res, 1996, 26(1): 141-150.
- 2. Thomas RH, Berkovic SF. The hidden genetics of epilepsy‐a clinically important new paradigm. Nat Rev Neurol, 2014, 10(5): 283-292.
- 3. Pitkänen A, Sutula T. Is epilepsy a progressive disorder? Prospects for new therapeutic approaches in temporal‐lobe epilepsy. Lancet Neurol, 2002, 1(3): 173-181.
- 4. Powell K, Lukasiuk K, O'Brien T, et al. Are alterations in transmitter receptor and ion channel expression responsible for epilepsies? Adv Exp Med Biol, 2014, 2014, 813: 211-229.
- 5. Herman ST. Epilepsy after brain insult: targeting epileptogenesis. Neurology, 2002, 59(Suppl 5): 21-26.
- 6. Lowenstein DH. Recent advances related to basic mechanisms of epileptogenesis. Epilepsy Res, 1996, 11(Suppl): 45-60.
- 7. Löscher W. Animal models of seizures and epilepsy: past, present, and future role for the discovery of antiseizure drugs. Neurochem Res, 2017, 42(7): 1873-1888.
- 8. Brooks Kayal A, Raol Y, Russek S. Alteration of epileptogenesis genes. Neurotherapeutics, 2009, 6(2): 312-318.
- 9. Christensen J, Pedersen MG, Pedersen CB, et al. Long‐term risk of epilepsy after traumatic brain injury in children and young adults: a population‐based cohort study. Lancet, 2009, 373(9669): 1105-1110.
- 10. Kobow K, Auvin S, Jensen F, et al. Finding a better drug for epilepsy: antiepileptogenesis targets. Epilepsia, 2012, 53(11): 1868-1876.
- 11. McNamara JO, Huang YZ, Leonard AS. Molecular signaling mechanisms underlying epileptogenesis. Sci STKE, 2006: re12.
- 12. Ritter A, Kammerer C, Brooks M, et al. Genetic variation in neuronal glutamate transport genes and associations with posttraumatic seizure. Epilepsia, 2016, 57(6): 984-993.
- 13. Arion D, Sabatini M, Unger T, et al. Correlation of transcriptome profile with electrical activity in temporal lobe epilepsy. Neurobiol Dis, 2006, 22(2): 374-387.
- 14. Berkovic S, Mulley J, Scheffer I, et al. Human epilepsies: interaction of genetic and acquired factors. Trends Neurosci, 2006, 29(7): 391-397.
- 15. Diamond M, Ritter A, Jackson E, et al. Genetic variation in the adenosine regulatory cycle is associated with posttraumatic epilepsy development. Epilepsia, 2015, 56(8): 1198-1206.
- 16. Cotter D, Kelso A, Neligan A. Genetic biomarkers of posttraumatic epilepsy: a systematic review. Seizure, 2017, 46: 53-58.
- 17. Racine RJ, Steingart M, McIntyre DC. Development of kindlingprone and kindling‐resistant rats: selective breeding and electrophysiological studies. Epilepsy Res, 1999, 35(3): 183-195.
- 18. Rimoin DL, Metrakos JD. The genetics of convulsive disorders in the families of hemiplegics. Proc 2nd Intern Congr Hum Genet. Rome: Institute G. Mendel, 1963: 1655-1658.
- 19. Darrah SD, Miller MA, Ren D, et al. Genetic variability in glutamic acid decarboxylase genes: associations with post‐traumatic seizures after severe TBI. Epilepsy Res, 2013, 103(2-3): 180-194.
- 20. Scher AI, Wu H, Tsao JW, et al. MTHFR C677T genotype as a risk factor for epilepsy including post‐traumatic epilepsy in a representative military cohort. J Neurotrauma, 2011, 28(9): 1739-1745.
- 21. Wagner AK, Miller MA, Scanlon J, et al. Adenosine A1 receptor gene variants associated with post‐traumatic seizures after severe TBI. Epilepsy Res, 2010, 90(3): 259-272.
- 22. Kuo PH, Kalsi G, Prescott CA, et al. Associations of glutamate decarboxylase genes with initial sensitivity and age‐at‐onset of alcohol dependence in the Irish Affected Sib Pair Study of Alcohol Dependence. Drug Alcohol Depend, 2009, 101(1-2): 80-87.
- 23. Franklin PH, Zhang G, Tripp ED, et al. Adenosine A1 receptor activation mediates suppression of (‐) bicuculline methiodide‐induced seizures in rat prepiriform cortex. J Pharmacol Exp Ther, 1989, 251: 1229-1236.
- 24. Alyu F, Dikmen M. Inflammatory aspects of epileptogenesis: contribution of molecular inflammatory mechanisms. Acta Neuropsychiatr, 2017, 29(1): 1-16.
- 25. Saletti P, Ali I, Casillas Espinosa P, et al. In search of antiepileptogenic treatments for post‐traumatic epilepsy. Neurobiol Dis, 2018, 123: 86-99.
- 26. Fu CY, Chen SJ, Cai NH, et al. Increased risk of post‐stroke epilepsy in Chinese patients with a TRPM6 polymorphism. Neurol Res, 2019, 41(4): 378-383.
- 27. Yang H, Song Z, Yang GP, et al. The ALDH2 rs671 polymorphism affects post‐stroke epilepsy susceptibility and plasma 4‐HNE levels. PLoS ONE, 2014, 9: e109634.
- 28. Szyndler J, Maciejak P, Turzynska D, et al. The effects of electrical hippocampal kindling of seizures on amino acids and kynurenic acid concentrations in brain structures. J Neural Transm (Vienna), 2012, 119: 141-149.
- 29. Morimoto K, Fahnestock M, Racine RJ. Kindling and status epilepticus models of epilepsy: rewiring the brain. Prog Neurobiol, 2004, 73(1): 1-60.
- 30. Racine RJ. Modification of seizure activity by electrical stimulation. II. Motor Seizure. Electroencephalogr Clin Neurophysiol, 1972, 32(3): 281-294.
- 31. McIntyre DC, Kent P, Hayley S, et al. Influence of psychogenic and neurogenic stressors on neuroendocrine and central monoamine activity in fast and slow kindling rats. Brain Res, 1999, 840(1-2): 65-74.
- 32. Racine RJ, Burnham WM, Gartner JG, et al. Rates of motor seizure development in rats subjected to electrical brain stimulation: strain and inter‐stimulation interval effects. Electroencephalogr Clin Neurophysiol, 1973, 35(5): 553-556.
- 33. McIntyre DC, Kelly ME, Dufresne C. FAST and SLOW amygdala kindling rat strains: comparison of amygdala, hippocampal, piriform and perirhinal cortex kindling. Epilepsy Res, 1999, 35(3): 197-209.
- 34. Baker BL, Neece CL, Fenning RM, et al. Mental disorders in five‐year‐old children with or without developmental delay: focus on ADHD. J Clin Child Adolesc Psychol, 2010, 39(4): 492-505.
- 35. Lane A, Harpster K, Heathcock J. Motor characteristics of young children referred for possible autism spectrum disorder. Pediatr Phys Ther, Spring, 2012, 24(1): 21-29.
- 36. Plioplys S, Dunn DW, Caplan R. 10‐year research update review: psychiatric problems in children with epilepsy. J Am Acad Child Adolesc Psychiatry, 2007, 46(11): 1389-1402.
- 37. Sharma P, Powell KL, Wlodek ME, et al. Delayed myelination and neurodevelopment in male seizureprone versus seizure‐resistant rats. Epilepsia, 2018, 59(4): 753-764.
- 38. Ciesielski KT, Harris RJ, Hart BL, et al. Cerebellar hypoplasia and frontal lobe cognitive deficits in disorders of early childhood. Neuropsychologia, 1997, 35: 643-655.
- 39. Hardan AY, Minshew NJ, Mallikarjuhn M, et al. Brain volume in autism. J Child Neurol, 2001, 16(6): 421-424.
- 40. Hardan AY, Pabalan M, Gupta N, et al. Corpus callosum volume in children with autism. Psychiatry Res, 2009, 174(1): 57-61.
- 41. Valera EM, Faraone SV, Murray KE, et al. Meta‐analysis of structural imaging findings in attention‐deficit/hyperactivity disorder. Biol Psychiatry, 2007, 61(12): 1361-1369.
- 42. Mohapel P, McIntyre DC. Amygdala kindling‐resistant (SLOW) or ‐prone (FAST) rat strains show differential fear responses. Behav Neurosci, 1998, 112(6): 1402-1413.
- 43. Gilby KL, Thorne V, Patey A, et al. Ruling out postnatal origins to attention‐deficit/hyperactivity disorder (ADHD)like behaviors in a seizure‐prone rat strain. Behav Neurosci, 2007, 121(2): 370-379.
- 44. Sharma P, Dedeurwaerdere S, Vandenberg MA, et al. Neuroanatomical differences in FAST and SLOW rat strains with differential vulnerability to kindling and behavioral comorbidities. Epilepsy Behav, 2016, 65: 42-48.
- 45. Anisman H, Lu ZW, Song C, et al. Influence of psychogenic and neurogenic stressors on endocrine and immune activity: differential effects in fast and slow seizing rat strains. Brain Behav Immun, 1997, 11(1): 63-74.
- 46. Merali Z, Kent P, Michaud D, et al. Differential impact of predator or immobilization stressors on central corticotropinreleasing hormone and bombesin‐like peptides in Fast and Slow seizing rat. Brain Res, 2001, 906(1-2): 60-73.
- 47. Azarbar A, McIntyre DC, Gilby KL. Caloric restriction alters seizure disposition and behavioral profiles in seizure‐prone (fast) versus seizure‐resistant (slow) rats. Behav Neurosci, 2010, 124(1): 106-114.
- 48. Michaud DM, McIntyre DC. Anisman H, et al Rat strains with high vs. low sexual reactivity: behavioral and lateralized amygdaloid CRH responses of males. Soc Neurosci Abstr, 1999, 25: 346.
- 49. McIntyre DC, Gilby KL. Genetically seizure‐prone or seizure‐resistant phenotypes and their associated behavioral comorbidities. Epilepsia, 2007, 48(Suppl 9): 30-32.
- 50. Anisman H, McIntyre DC. Conceptual, spatial, and cue learning in the Morris water maze in fast or slow kindling rats: attention deficit comorbidity. J Neurosci, 2002, 22(17): 7809-7817.
- 51. McIntyre DC, McLeod WS, Anisman H. Working and reference memory in seizure‐prone and seizure‐resistant rats: impact of amygdala kindling. Behav Neurosci, 2004, 118(2): 314-323.
- 52. McLeod WSM, McIntyre DC. The effects of amygdala kindling on t‐maze performance in epileptogenetically fast and slow kindling rat strains. Soc Neurosci Abstr, 1995, 21: 2115.
- 53. Reinhart CJ, Pellis SM, McIntyre DC. Development of play fighting in kindling‐prone (FAST) and kindling‐resistant (SLOW) rats: how does the retention of phenotypic juvenility affect the complexity of play? Dev Psychobiol, 2004, 45(2): 83-92.
- 54. Gilby KL. A new rat model for vulnerability to epilepsy and autism spectrum disorders. Epilepsia, 2008, 49(Suppl 8): 108-110.
- 55. Shultz SR, Aziz NA, Yang L, et al. Intracerebroventricular injection of propionic acid, an enteric metabolite implicated in autism, induces social abnormalities that do not differ between seizure‐prone (FAST) and seizure‐resistant (SLOW) rats. Behav Brain Res, 2015, 278: 542-548.
- 56. Sharma P, Wright DK, Johnston LA, et al. Differences in white matter structure between seizure prone (FAST) and seizure resistant (SLOW) rat strains. Neurobiol Dis, 2017, 104: 33-40.
- 57. Mercier‐Guidez E, Loas G. Polydipsia and water intoxication in 353 psychiatric inpatients: an epidemiological and psychopathological study. Eur Psychiatry, 2000, 15(5): 306-311.
- 58. Terai K, Munesue T, Hiratani M. Excessive water drinking behavior in autism. Brain Dev, 1999, 21(2): 103-106.
- 59. Okazaki M, Ito M, Kato M. Effects of polydipsia‐hyponatremia on seizures in patients with epilepsy. Psychiatry Clin Neurosci, 2007, 61(3): 330-332.
- 60. Kohl S, Heekeren K, Klosterkotter J, et al. Prepulse inhibition in psychiatric disorders-apart from schizophrenia. J Psychiatr Res, 2013, 47(4): 445-452.
- 61. Ma J, Leung LS. Effects of hippocampal partial kindling on sensory and sensorimotor gating and methamphetamine‐induced locomotion in kindling‐prone and kindling‐resistant rats. Epilepsy Behav, 2016, 58: 119-126.
- 62. Gilby KL, O'Brien TJ. Epilepsy, autism, and neurodevelopment: kindling a shared vulnerability? Epilepsy Behav, 2013, 26(3): 370-374.
- 63. Inostroza M, Cid E, Brotons‐Mas J, et al. Hippocampal‐dependent spatial memory in the water maze is preserved in an experimental model of temporal lobe epilepsy in rats. PLoS ONE, 2011, 6: e22372.
- 64. Mazarati AM, Shin D, Kwon YS, et al. Elevated plasma corticosterone level and depressive behavior in experimental temporal lobe epilepsy. Neurobiol Dis, 2009, 34(3): 457-461.
- 65. Pineda E, Jentsch JD, Shin D, et al. Behavioral impairments in rats with chronic epilepsy suggest comorbidity between epilepsy and attention deficit/hyperactivity disorder. Epilepsy Behav, 2014, 31: 267-275.
- 66. Jackson DC, Irwin W, Dabbs K, Lin JJ, et al. Ventricular enlargement in new‐onset pediatric epilepsies. Epilepsia, 2011, 52(12): 2225-2232.
- 67. Liu RS, Lemieux L, Bell GS, et al. The structural consequences of newly diagnosed seizures. Ann Neurol, 2002, 52(5): 573-580.
- 68. Malmgren K, Rydenhag B, Hallbook T. Reappraisal of corpus callosotomy. Curr Opin Neurol, 2015, 28(2): 175-181.
- 69. Vanier MT, Holm M, Ohman R, et al. Developmental profiles of gangliosides in human and rat brain. J Neurochem, 1971, 18(4): 581-592.
- 70. Lee CY, Tabesh A, Benitez A, et al. Microstructural integrity of early‐ versus late‐myelinating white matter tracts in medial temporal lobe epilepsy. Epilepsia, 2013, 54(10): 1801-1809.
- 71. Zhang Y, Zhang H, Wang L, et al. Quetiapine enhances oligodendrocyte regeneration and myelin repair after cuprizone‐induced demyelination. Schizophr Res, 2012, 138(1): 8-17.
- 72. Ma L, Yang F, Zhao R, et al. Quetiapine attenuates cognitive impairment and decreases seizure susceptibility possibly through promoting myelin development in a rat model of malformations of cortical development. Brain Res, 2015, 1622: 443-451.
- 73. Buckmaster PS, Zhang GF, Yamawaki R. Axon sprouting in a model of temporal lobe epilepsy creates a predominantly excitatory feedback circuit. J Neurosci, 2002, 22(15): 6650-6658.
- 74. Xu B, McIntyre DC, Fahnestock M, et al. Strain differences affect the induction of status epilepticus and seizure‐induced morphological changes. Eur J Neurosci, 2004, 20(2): 403-418.
- 75. Baram TZ, Ribak CE. Peptide‐induced infant status epilepticus causes neuronal death and synaptic reorganization. Neuro Report, 1995, 6(2): 277-280.
- 76. Sperber EF, Haas KZ, Stanton PK, et al. Resistance of the immature hippocampus to seizure‐induced synaptic reorganization. Brain Res Dev Brain Res, 1991, 60(1): 88-93.
- 77. Yang Y, Tandon P, Liu Z, et al. Synaptic reorganization following kainic acid‐induced seizures during development. Brain Res Dev Brain Res, 1998, 107(2): 169-177.
- 78. Racine RJ, Steingart M, Bureau Y, et al. Differential sensitivity of genetically Fast vs. Slow kindling rats strains to GABAergic convulsive agents. Neuropharmacology, 2003, 45(7): 918-924.
- 79. Schwabe K, McIntyre DC, Poulter MO. The neurosteroid THDOC differentially affects spatial behavior and anesthesia in Slow and Fast kindling rat strains. Behav Brain Res, 2007, 178: 283-292.
- 80. McIntyre DC, Poulter MO, Gilby K. Kindling: some old and some new. Epilepsy Res, 2002, 50: 79-92.
- 81. Poulter MO, Brown LA, Tynan S, et al. Differential expression of alpha1, alpha2, alpha3, and alpha5 GABAA receptor subunits in seizure‐prone and seizure‐resistant rat models of temporal lobe epilepsy. J Neurosci, 1999, 19(11): 4654-4661.
- 82. Camfield CS, Camfield PR, Gordon K, et al. Incidence of epilepsy in childhood and adolescence: a population‐based study in Nova Scotia from 1977 to 1985. Epilepsia, 1996, 37(1): 19-23.
- 83. Dunn DW, Austin JK, Huster GA. Behaviour problems in children with new‐onset epilepsy. Seizure, 1997, 6(4): 283-287.
- 84. Elmér E, Kokaia Z, Kokaia M, et al. Mossy fibre sprouting: evidence against a facilitatory role in epileptogenesis. NeuroReport, 1997, 8(5): 1193-1196.
- 85. Flynn C, Monfils MH, Kleim JA, et al. Differential neuroplastic changes in neocortical movement representations and dendritic morphology in epilepsy‐prone and epilepsy‐resistant rat strains following high‐frequency stimulation. Eur J Neurosci, 2004, 19(8): 2319-2328.
- 86. Teskey GC, Monfils MH, VandenBerg PM, et al. Motor map expansion following repeated cortical and limbic seizures is related to synaptic potentiation. Cereb Cortex, 2002, 12(1): 98-105.
- 87. Uematsu S, Lesser R, Fisher RS, et al. Motor and sensory cortex in humans: topography studied with chronic subdural stimulation. Neurosurgery, 1992, 31(1): 59-71; discussion 71-52.
- 88. Reid AY, Pittman QJ, Teskey GC. A prolonged experimental febrile seizure results in motor map reorganization in adulthood. Neurobiol Dis, 2012, 45(2): 692-700.
- 89. Lu B, Nagappan G, Lu Y. BDNF and synaptic plasticity, cognitive function, and dysfunction. Handb Exp Pharmacol, 2014, 220: 223-250.
- 90. Simonato M. Neurotrophic factors and status epilepticus. Epilepsia, 2018, 59(Suppl 2): 87-91.
- 91. Kokaia Z, Kelly ME, Elmer E, et al. Seizure‐induced differential expression of messenger RNAs for neurotrophins and their receptors in genetically fast and slow kindling rats. Neuroscience, 1996, 75(1): 197-207.
- 92. Barker‐Haliski ML, Loscher W, White HS, et al. Neuroinflammation in epileptogenesis: Insights and translational perspectives from new models of epilepsy. Epilepsia, 2017, 58(Suppl 3): 39-47.
- 93. Najjar S, Pearlman DM, Alper K, et al. Neuroinflammation and psychiatric illness. J Neuroinflammation, 2013, 10: 43.
- 94. Tisher PW, Holzer JC, Greenberg M, et al. Psychiatric presentations of epilepsy. Harv Rev Psychiatry, 1993, 1(4): 219-218.
- 95. Gilby KL, Jans J, McIntyre DC. Chronic omega‐3 supplementation in seizure‐prone versus seizure‐resistant rat strains: a cautionary tale. Neuroscience, 2009, 163(3): 750-758.
- 96. Flynn C, Brown CE, Galasso SL, et al. Zincergic innervation of the forebrain distinguishes epilepsy‐prone from epilepsy‐resistant rat strains. Neuroscience, 2007, 144(4): 1409-1414.
- 97. Gilby KL, Crino P, McIntyre DC. Neurodevelopment in seizureprone and seizure‐resistant rat strains: recognizing conflicts in management. Epilepsia, 2007, 48(Suppl 5): 114-118.
- 98. Gordon I, Grauer E, Genis I, et al. Memory deficits and cholinergic impairments in apolipoprotein E‐deficient mice. Neurosci Lett, 1995, 199(1): 1-4.
- 99. Weeber EJ, Beffert U, Jones C, et al. Reelin and ApoE receptors cooperate to enhance hippocampal synaptic plasticity and learning. J Biol Chem, 2002, 277(42): 39944-39952.
- 100. Köhling R. Voltage‐gated sodium channels in epilepsy. Epilepsia, 2002, 43(11): 1278-1295.
- 101. Hauser RM, Henshall DC, Lubin FD. The Epigenetics of epilepsy and its progression. Neuroscientist, 2018, 24(2): 186-200.
- 102. Chen T, Giri M, Xia Z, et al. Genetic and epigenetic mechanisms of epilepsy: a review. Neuropsychiatr Dis Treat, 2017, 13: 1841-1859.
- 103. Langberg T, Dashek R, Mulvey B, et al. Distinct behavioral phenotypes in novel “fast” kindlingsusceptible and “slow” kindling‐resistant rat strains selected by stimulation of the hippocampal perforant path. Neurobiol Dis, 2016, 85: 122-129.
- 104. Pitkänen A, Immonen RJ, Grohn OH, et al. From traumatic brain injury to posttraumatic epilepsy: what animal models tell us about the process and treatment options. Epilepsia, 2009, 50(Suppl 2): 21-29.
- 105. Engel J Jr, Pitkänen A, Loeb JA, et al. Epilepsy biomarkers. Epilepsia, 2013, 54(Suppl 4): 61-69.
-
Previous Article
常染色体显性遗传性脑动脉病伴皮质下梗死和白质脑病癫痫发作的研究进展 -
Next Article
立体定向激光消融术治疗脑海绵状血管瘤所致癫痫的安全性和有效性