1. |
Beghi E. The Epidemiology of epilepsy. Neuroepidemiology, 2020, 54(2): 185-191.
|
2. |
Tang F, Hartz AMS, Bauer B. Drug-resistant epilepsy: multiple hypotheses, few answers. Frontiers in Neurology, 2017, 8: 301.
|
3. |
Thijs R D, Surges R, O’Brien T J, et al. Epilepsy in adults. The Lancet, 2019, 393(10172): 689-701.
|
4. |
Arya R, Ervin B, Holloway T, et al. Electrical stimulation sensorimotor mapping with stereo-EEG. Clinical Neurophysiology, 2020, 131(8): 1691-1701.
|
5. |
Isitan C, Yan Q, Spencer DD, et al. Brief history of electrical cortical stimulation: a journey in time from Volta to Penfield. Epilepsy Research, 2020, 166: 106363.
|
6. |
Eadie M. Cortical epileptogenesis and David Ferrier. Journal of the History of the Neurosciences, 2018, 27(2): 107-116.
|
7. |
Pearce JMS. Sir David Ferrier MD, FRS. Journal of Neurology, Neurosurgery, and Psychiatry, 2003, 74(6): 787.
|
8. |
Feindel W, Leblanc R, De Almeida AN. Epilepsy surgery: historical highlights 1909–2009. Epilepsia, 2009, 50(s3): 131-151.
|
9. |
Bancaud J, Talairach J, Morel P, et al. “Generalized” epileptic seizures elicited by electrical stimulation of the frontal lobe in man. Electroencephalography and Clinical Neurophysiology, 1974, 37(3): 275-282.
|
10. |
Rattay F. The basic mechanism for the electrical stimulation of the nervous system. Neuroscience, 1999, 89(2): 335-346.
|
11. |
Ranck JB. Which elements are excited in electrical stimulation of mammalian central nervous system: a review. Brain Research, 1975, 98(3): 417-440.
|
12. |
Nowak L G, Bullier J. Axons, but not cell bodies, are activated by electrical stimulation in cortical gray matter. Experimental Brain Research, 1998, 118(4): 477-488.
|
13. |
Kole MHP, Stuart GJ. Signal processing in the axon initial segment. Neuron, 2012, 73(2): 235-247.
|
14. |
Jankowska E, Padel Y, Tanaka R. The mode of activation of pyramidal tract cells by intracortical stimuli. The Journal of Physiology, 1975, 249(3): 617-636.
|
15. |
Canals S, Beyerlein M, Murayama Y, et al. Electric stimulation fMRI of the perforant pathway to the rat hippocampus. Magnetic Resonance Imaging, 2008, 26(7): 978-986.
|
16. |
David O, Bastin J, Chabardès S, et al. Studying network mechanisms using intracranial stimulation in epileptic patients. Frontiers in Systems Neuroscience, 2010, 4: 15.
|
17. |
Ezure K, Oshima T. Lateral spread of neuronal activity within the motor cortex investigated with intracellular responses to distant epicortical stimulation. The Japanese Journal of Physiology, 1985, 35(2): 223-249.
|
18. |
Keller CJ, Honey CJ, Mégevand P, et al. Mapping human brain networks with cortico-cortical evoked potentials. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369(1653): 20130528.
|
19. |
Li L, Kriukova K, Engel J, et al. Seizure development in the acute intrahippocampal epileptic focus. Scientific Reports, 2018, 8(1): 1423.
|
20. |
Brodovskaya A, Shiono S, Kapur J. Activation of the basal ganglia and indirect pathway neurons during frontal lobe seizures. Brain, 2021, 144(7): 2074-2091.
|
21. |
Jehi L, Morita-Sherman M, Love TE, et al. Comparative effectiveness of stereotactic electroencephalography versus subdural grids in epilepsy surgery. Annals of Neurology, 2021, 90(6): 927-939.
|
22. |
Zijlmans M, Zweiphenning W, van Klink N. Changing concepts in presurgical assessment for epilepsy surgery. Neurology, 2019, 15(10): 594-606.
|
23. |
Trébuchon A, Chauvel P. Electrical stimulation for seizure induction and functional mapping in stereoelectroencephalography. Journal of Clinical Neurophysiology, 2016, 33(6): 511-521.
|
24. |
Perrone‐Bertolotti M, Alexandre S, Jobb A, et al. Probabilistic mapping of language networks from high frequency activity induced by direct electrical stimulation. Human Brain Mapping, 2020, 41(14): 4113-4126.
|
25. |
Cuisenier P, Testud B, Minotti L, et al. Relationship between direct cortical stimulation and induced high-frequency activity for language mapping during SEEG recording. Journal of Neurosurgery, 2021, 134(3): 1251-1261.
|
26. |
Arya R, Ervin B, Dudley J, et al. Electrical stimulation mapping of language with stereo-EEG. Epilepsy & Behavior, 2019, 99: 106395.
|
27. |
Cuello Oderiz C, von Ellenrieder N, Dubeau F, et al. Association of cortical stimulation-induced seizure with surgical outcome in patients with focal drug-resistant epilepsy. JAMA Neurology, 2019, 76(9): 1070-1078.
|
28. |
Sanchez-Larsen A, Principe A, Ley M, et al. Characterization of the insular role in cardiac function through intracranial electrical stimulation of the human insula. Annals of Neurology, 2021, 89(6): 1172-1180.
|
29. |
Mariani V, Balestrini S, Gozzo F, et al. Intracerebral electrical stimulations of the temporal lobe: a stereoelectroencephalography study. European Journal of Neuroscience, 2021, 54(4): 5368-5383.
|
30. |
Chassoux F, Navarro V, Catenoix H, et al. Planning and management of SEEG. Clinical Neurophysiology, 2018, 48(1): 25-37.
|
31. |
Nathan SS, Sinha SR, Gordon B, et al. Determination of current density distributions generated by electrical stimulation of the human cerebral cortex. Electroencephalography and Clinical Neurophysiology, 1993, 86(3): 183-192.
|
32. |
Arya R. Electrical stimulation mapping of brain function: a comparison of subdural electrodes and stereo-EEG. Frontiers in Human Neuroscience, 2020, 14: 102.
|
33. |
Joshi S, Stephens E, Bleasel A, et al. Successful stereoelectroencephalography re-evaluation in epilepsy patients after failed initial subdural grid evaluation. Epileptic Disorders, 2023, 25(4): 534-544.
|
34. |
Taussig D, Chipaux M, Fohlen M, et al. Invasive evaluation in children (SEEG vs subdural grids). Seizure, 2020, 77: 43-51.
|
35. |
Jha R, Liu DD, Gerstl JVE, et al. Comparative effectiveness of stereotactic, subdural, or hybrid intracranial EEG monitoring in epilepsy surgery. Journal of Neurosurgery, 2024, 141(2): 372-380.
|
36. |
Tandon N, Tong BA, Friedman ER, et al. Analysis of morbidity and outcomes associated with use of subdural grids vs stereoelectroencephalography in patients with intractable epilepsy. JAMA Neurology, 2019, 76(6): 672-681.
|
37. |
Hu W H, Zhao B T, Zhang C, et al. Focal cortical dysplasia II-related seizures originate from the bottom of the dysplastic sulcus: a stereoelectroencephalography study. Clinical Neurophysiology, 2019, 130(9): 1596-1603.
|
38. |
Macdonald-Laurs E, Maixner WJ, Bailey CA, et al. One-stage, limited-resection epilepsy surgery for bottom-of-sulcus dysplasia. Neurology, 2021, 97(2): e178-e190.
|
39. |
Young JJ, Coulehan K, Fields MC, et al. Language mapping using electrocorticography versus stereoelectroencephalography: a case series. Epilepsy & Behavior, 2018, 84: 148-151.
|
40. |
Männlin J, San Antonio-Arce V, Reinacher PC, et al. Safety profile of subdural and depth electrode implantations in invasive EEG exploration of drug-resistant focal epilepsy. Seizure, 2023, 110: 21-27.
|
41. |
Talai A, Eschbach K, Stence NV, et al. Comparison of subdural grid and stereoelectroencephalography in a cohort of pediatric patients. Epilepsy Research, 2021, 177: 106758.
|
42. |
Gomes FC, Larcipretti ALL, Udoma-Udofa OC, et al. Stereoelectroencephalography versus subdural electrodes for invasive monitoring of drug-resistant epilepsy patients: a systematic review and meta-analysis. Seizure, 2025, 129: 33-41.
|
43. |
Cockle E, Rayner G, Malpas C, et al. An international survey of SEEG cortical stimulation practices. Epilepsia Open, 2023, 8(3): 1084-1095.
|