Objective To explore an effective method of culturing the canine bladder smooth muscle cells, observe the morphological characteristics of the bladder smooth muscle cells growing on acellular small intestinal submucosa(SIS) and offer an experimental basis for reconstruction of the bladder smooth muscle structure by the tissue engineering techniques. Methods The enzymetreatment method and the explant method were respectively used to isolate and harvest the canine bladder smooth muscle cells, and then a primary culture of these cells was performed. The canine bladder smooth musclecells were seeded on the SIS scaffold, and the composite of the bladder smooth muscle cells and the SIS scaffold were co cultured for a further observation. At 5,7 and 9 days of the co culture, the specimens were taken; the bladder smooth muscle cells growing on the SIS scaffold were observed by the hematoxylin staining, the HE staining, and the scanning electron microscopy. The composite of the bladder smooth muscle cells on the SIS scaffold was used as the experimental group, and the bladder smooth muscle cells with no SIS were used as the control group. In each group, 9 holes were chosen for the seeded bladder smooth muscle cells, and then the cells were collected at 3, 5 and 7 days for the cell counting after the enzyme treatment. Morphological characteristics of the cells were observed under the phase contrast microscope and the transmission electron microscope. Expression of the cell specific marker protein was assessed by the immunohistochemical examinaiton. The proliferation of the cells was assessed by the cell counting after the seeding on the SIS scaffold. Results The primary bladder smooth muscle cells that had been harvested by the enzyme treatment method were rapidly proliferated, and the cells had good morphological characteristics. After the primary culture in vitrofor 5 days, the bladder smooth muscle cells grew in confluence. When the bladder smooth muscle cells were seeded by the explant method, a small amount of the spindleshaped bladder smooth muscle cells emigrated from the explant at 3 days. The cells were characterized by the welldeveloped actin filaments inthe cytoplasm and the dense patches in the cell membrane under the transmissionelectron microscope. The immunohistochemical staining showed the canine bladdersmooth muscle cells with positive reacting α actin antibodies. The bladder smooth muscle cells adhered to the surface of the SIS scaffold, growing and proliferating there. After the culture in vitro for 5 days, the smooth muscle cells covered all the surface of the scaffold, showing a singlelayer cellular structure. The cell counts at 3, 5 and 7 days in the experimental group were(16.85±0.79)×105,(39.74±2.16)×105 and (37.15±2.02)×105, respectively. Thecell counts in the control group were(19.43±0.54)×105,(34.50±1.85)×105 and (33.07±1.31)×105, respectively. There was a significant difference between the two groups at 5 days (P<0.05). ConclusionWith the enzyme treatment method, the primarily cultured canine bladder smooth muscle cells can produce a great amount of good and active cells in vitro. The acellular SIS can offer an excellent bio scaffold to support the bladder smooth muscle cells to adhere and grow, which has provided the technical foundation for a further experiment on the tissue engineered bladder reconstruction.
Citation: HAN Ping,YANG Zhiming,ZHI Wei,et al.. EXPERIMENTAL STUDIES ON CANINE BLADDER SMOOTH MUSCLE CELLS CULTURED O N ACELLULAR SMALL INTESTINAL SUBMUCOSA IN VITRO. Chinese Journal of Reparative and Reconstructive Surgery, 2007, 21(12): 1366-1370. doi: Copy
Copyright © the editorial department of Chinese Journal of Reparative and Reconstructive Surgery of West China Medical Publisher. All rights reserved