Objective To compared the changes of macular microvascular architecture in early stage familial exudative vitreoretinopathy (FEVR) patients with inner retinal layer (IRL) persistence and without IRL persistence. MethodsA retrospective clinical study. From 2017 to 2022, 94 patients with stage 1 FEVR with or without IRL residue and 45 age- and sex-matched healthy volunteers with 45 eyes (normal control group) who were confirmed by ophthalmology examination in Hangzhou Hospital of Optometry Affiliated to Wenzhou Medical University and Zhejiang Provincial People's Hospital were included in the study. According to whether there was IRL residue, the patients were divided into IRL group and non-IRL group, with 22 patients (22 eyes) and 72 patients (72 eyes), respectively. Best corrected visual acuity (BCVA) and optical coherence tomography angiography (OCTA) were performed in all eyes. Superficial vessel density (SCP) and deep vessel density (DCP) of whole image, fovea and parafovea, the area and perimeter of fovea avascular area (FAZ), A-circularity index (AI, perimeter/standard circle perimeter with equal area) and vessel density around the 300 μm width of the FAZ (FD), central macular thickness (CMT) on macular 3 mm × 3 mm scan on OCTA were measured. ResultsSCP and DCP of whole image (F=10.774, 4.583) and parafovea (F=10.433, 3.912), CMT (F=171.940) in IRL group and non-IRL group on macular 3 mm × 3 mm scan on OCTA were significantly lower than that in normal persons (P<0.05). There were significant differences among three groups of the area of FAZ (F=4.315), AI (F=3.413), FD-300 (F=13.592) (P<0.05). BCVA were worst in IRL group (P<0.05). ConclusionsBlood flow density decreased in macular area of FEVR patients. CMT is significantly thicker than normal population. The FAZ area of the foveal IRL residual eyes is small and irregular, with worse BCVA and lower macular blood density.
ObjectiveTo observe and analyze the influencing factors for the prognosis of anti-vascular endothelial growth factor (VEGF) drug treatment in patients with macular neovascularization (MNV) under 45 years old. MethodsA retrospective clinical case study. A total of 89 MNV patients with 96 eyes who were diagnosed and treated with anti-VEGF drugs in Department of Ophthalmology of The Second Hospital of Lanzhou University from January 2020 to January 2024 were included in the study. The ages of all patients were <45 years old. All patients underwent best corrected visual acuity (BCVA) and optical coherence tomography (OCT) examinations; 49 eyes underwent OCT angiography (OCTA) examination. The BCVA examination was carried out using the international standard visual acuity chart and was converted into the logarithm of the minimum angle of resolution (logMAR) visual acuity for statistics. The macular foveal thickness (CMT) was measured using an OCT instrument. The size of the MNV lesion was measured using the software of the OCTA self-contained device. The affected eyes were given intravitreal injection of anti-VEGF drugs once, and then the drugs were administered as needed after evaluation. The follow-up time after treatment was ≥6 months. During the follow-up, relevant examinations were performed using the same equipment and methods as before treatment. The last follow-up was taken as the time point for efficacy evaluation. According to the OCT image characteristics of the MNV lesions, the affected eyes were divided into the fibrous scar group and the non-fibrous scar group, with 52 (54.16%, 52/96) and 44 (45.83%, 44/96) eyes respectively. Comparing the CMT and BCVA at the last follow-up with those at the baseline, the affected eyes were divided into the CMT reduction group, the CMT increase group, the BCVA improvement group and the BCVA reduction group, with 66 (68.75%, 66/96), 30 (31.25%, 30/96) eyes and 74 (77.08%, 74/96), 22 (22.92%, 22/96) eyes respectively. The Mann-Whitney U test was used for the comparison of non-normally distributed measurement data between groups. Logistic regression analysis was used to analyze the independent factors affecting the prognosis of MNV patients. ResultsThere were no statistically significant differences in the age (Z=−0.928) and gender composition ratio (χ2= 0.123) between the fibrous scar group and the non-fibrous scar group (P>0.05); there were statistically significant differences in the number of eyes with a follow-up time of ≥36 months and <36 months (χ2= 3.906, P=0.048); there were statistically significant differences in the size of the MNV lesions (Z=−2.385, P=0.017); there were statistically significant differences in the number of eyes with different vascular network morphologies (χ2=12.936, P=0.001). Before treatment and at the last follow-up, the CMT of the affected eyes was 267.50 (237.25, 311.75) μm and 242.00 (217.25, 275.75) μm respectively; logMAR BCVA was 0.20 (0.10, 0.50) and 0.35 (0.16, 0.60) logMAR respectively. There were statistically significant differences in the CMT and logMAR BCVA before treatment and at the last follow-up (Z=−3.311,−1.984; P=0.001, 0.047). There were statistically significant differences in different ages (Z=−2.284), myopic diopter (χ2=7.437), etiology (χ2=6.956), and disease course (Z=−1.687) between the CMT reduction group and the CMT increase group (P<0.05). There were statistically significant differences in the number of eyes with different subjective feelings between the BCVA improvement group and the BCVA reduction group (χ2=10.133, P<0.05). The results of logistic regression analysis showed that the etiology was an independent risk factor for CMT thickening. ConclusionsAge, etiology, myopic diopter, disease course, follow-up time, lesion size and the morphology of the neovascular network are the influencing factors for the prognosis of anti-VEGF drug treatment in MNV patients under 45 years old. The etiology is an independent risk factor for CMT increase.
ObjectiveTo observe the histopathological changes in peripheral retinal lesions under intraoperative optical coherence tomography (iOCT). Methods A retrospective case series study. Eighty-eight patients (194 eyes) who underwent vitreoretinal surgery in the Department of Ophthalmology at the East Ward of the First Affiliated Hospital of Zhengzhou University from October 2021 to May 2022 in 94 eyes were included in the study. Among them, 49 cases were male and 39 cases were female, with the mean age of (50.93±17.55) years. Ninety-four eyes included 32 eyes with retinal detachment, 6 eyes with proliferative diabetic retinopathy, 28 eyes with vitreous hemorrhage, 8 eyes with ocular trauma, 14 eyes with the macular lesion, 1 eye with uveitis, 1 eye with family exudative vitreoretinopathy (FEVR), 1 eye with acute retinal necrosis (ARN), and 3 eyes with lens dislocation. All affected eyes were examined with iOCT during vitreoretinal surgery. The iOCT scanning of the peripheral retina was performed with the help of episcleral pressure. The pre-equatorial and serrated edge anterior and posterior of retinas were scanned according to the characteristics of different fundus diseases. Various abnormal fundus manifestations were recorded. Results In 94 eyes, 53 eyes (56.38%, 53/94) have different types of retinopathy in the peripheral retina. Of these, 7 eyes (7.45%) have retinal cystoid degeneration; 19 eyes (20.21%) have lattice degeneration; and 8 eyes (8.51%) have pigment degeneration; 9 eyes (9.57%) have pavement-like degeneration; 7 eyes (7.45%) have small occult holes; 1 eye (1.06%) has familial exudative vitreoretinopathy (FEVR) serrated edge "dyke-like" proliferative degeneration; 4 eyes (4.26%) have vitreous and retinopathy adhesions; and one eye (1.06%) has ARN. Conclusion With clear refractive media, iOCT can provide clear scans of different peripheral retinal lesions.
Objective To verify the significance of the morphological changes of the macula and its relationship to visual function by using optical coherence tomography (OCT) after scleral buckling procdure. Methods The macula of retinae of 68 patients (70 eyes) with reattached retinae after scleral buckling operation for retinal detachment were examined by OCT to scan the macula through fovea vertically and horizontally. Results Among the 70 eyes, 22 eyes revealed normal macula with thickness of neurosensory retina meant (146.47±20.59)μm. In the other 48 eyes (68.60%) with abnormal macula, 19 eyes showed extensive subretinal interspace, 9 eyes showed local subretinal interspace, 8 eyes showed macula edema, 4 eyes showed thin macula, 4 eyes showed subretinal proliferation and 4 eye showed epiretinal membrane over macula. In the normal macular structure group under the OCT, the visual acuity (VA) of the operated eyes was more than 0.3 in 6 eyes 2 weeks after operation and in 14 eyes 3 mons after operation. In the macula edema group, the VA was more than 0.3 in 1 eye 2 weeks after opoeration and 2 eyes 3 mons after operation. In the subretinal interspace group, the VA was more than 0.3 in 5 eyes 2 weeks after operation and in 23 eyes 3 mons after operation. The proportions of the numbers of operated eyes with the VA more than 0.3 after 3 mons of the operation in macular normal group subretinal interspace group and other macular disease group were significantly different (χ2=18.91, P<0.01). Conclusion OCT can precisely detect the structural changes of macula after retinal reattachment and assess visual function after surgery of retinal detachment. (Chin J Ocul Fundus Dis, 2002, 18: 266-268)
ObjectiveTo observe the correlation between retinal capillary density and retinal thickness in the macula and spherical equivalent (SE) in school-age children. MethodsA cross-sectional study. From May to December 2022, 182 school-age children who visited the ophthalmology department of the First Affiliated Hospital of Zhengzhou University were included . There were 95 males and 87 females. The age ranged from 6 to 12 years, and the spherical equivalent (SE) was +0.50 to -6.00 D. They were divided into three groups based on the SE of the right eyes: 54 eyes in emmetropia group (+0.50≤SE<-0.50 D), 71 eyes in low myopia group (-0.50≤SE<-3.00 D), and 57 eyes in moderate myopia group (-3.00≤SE≤-6.00 D). The macular area of 6 mm×6 mm was scanned using swept-source optical coherence tomography angiography and was divided into three concentric rings centered on the fovea, including the macular central fovea (0-1 mm diameter), inner ring (1-3 mm diameter) and outer ring (3-6 mm diameter). The retinal thickness and blood flow density of superficial vascular plexus (SVP) and deep vascular plexus (DVP) in different zones within 6 mm of the macular area were measured. The relationships between SE and SVP, DVP and retinal thickness in each ring region were investigated by univariate and multivariate linear regression analyses, smooth curve fitting, and threshold effects. ResultsThere were significant differences in the SVP (F=6.64, 26.06, 22.69) and DVP (F=7.97, 25.01, 5.09) of macular central fovea, inner ring and outer ring among the emmetropia, low myopia and moderate myopia groups (P<0.05). Univariate linear regression analysis showed that the SVP (β=-0.56, -1.17, -0.79) and DVP (β=-1.03, -0.93, -0.45) of the three regions were positively correlated with SE (P<0.05). After smooth curve fitting, threshold effect analysis and multivariate linear regression analysis, the SVP and DVP in the macular central fovea were linearly positively correlated with SE (β=-0.91, -1.40; P<0.05), and SVP and DVP in the inner ring and outer ring showed an inverted U-shaped curve relationship with SE with the inflection (<3.00 D). When the SE was less than <3.00 D, the SVP and DVP in the inner ring and outer ring were positively correlated with SE (P<0.05). When the SE was higher than -3.00 D, except for the DVP in the inner ring region, the other parameters were negatively correlated with SE (P<0.05). There were significant differences in retinal thickness of the inner ring and outer ring (F=5.47, 16.36; P<0.05), and no significant difference in the macular central fovea among the emmetropia, low and moderate myopia groups (F=2.16, P>0.05). By using univariate and multivariate linear regression analyses, the retinal thickness in the inner ring and outer ring were negatively correlated with SE (β =1.99, 3.05; P<0.05). However, no correlation was found between retinal thickness and SE in the macular central fovea (β=-1.65, P>0.05). ConclusionsIn school-age children with SE between +0.50 D and -6.00 D, the retinal capillaries density of the macular central fovea gradually increase, and increase first and then decrease in the inner ring and outer ring with increasing SE. The retinal thickness of inner ring and outer ring gradually decrease and not change significantly in the macular central fovea.
Objective To quantitatively evaluate the changes of choroidal biomarkers in patients with central serous chorioretinopathy (CSC) and preliminarily explore its pathogenesis. MethodsClinical cross-sectional study. From July 2021 to December 2022, 74 eyes of 65 patients with CSC (CSC group) confirmed by ophthalmic examination at the First Affiliated Hospital of Zhengzhou University were included in the study. Among them, 46 patients (51 eyes) were male, 19 patients (23 eyes) were female. The duration from the onset of symptoms to the time of treatment was less than or equal to 3 months. A control group consisted of 40 healthy volunteers (74 eyes) matched in age and gender. Among them, 26 patients (50 eyes) were male, and 14 patients (24 eyes) were female. Using VG200D from Microimaging (Henan) Technology Co., Ltd., macular scanning source light coherence tomography angiography was performed, with scanning range 6 mm × 6 mm. According to the division of the diabetes retinopathy treatment research group, the choroid within 6 mm of the macular fovea was divided into three concentric circles centered on the macular fovea, namely, the central area with a diameter of 1 mm, the macular area with a diameter of 1-3 mm, and the surrounding area of the fovea with a diameter of 3-6 mm. The device comes with software to record the three-dimensional choroidal vascular index (CVI), choroidal vascular volume (CVV), perfusion area of the choroidal capillary layer (CFA), choroidal thickness (CT), and three-dimensional CVI, CVV, and CT in the upper, temporal, lower, and subnasal quadrants within 6 mm of the fovea. Quantitative data between the two groups were compared using an independent sample t-test. Qualitative data comparison line χ2 inspection. The value of receiver operating curve (ROC) analysis in predicting the occurrence of CSC, including CVI, CVV, CFA, and CT. ResultsCompared with the control group, the CVI (t=3.133, 4.814), CVV (t=7.504, 9.248), and CT (t=10.557, 10.760) in the central and macular regions of the affected eyes in the CSC group significantly increased, while the CFA (t=-8.206, -5.065) significantly decreased, with statistically significant differences (P<0.05); CVI (t=7.129), CVV (t=10.020), and CT (t=10.488) significantly increased within 6 mm of the central fovea, while CFA (t=-2.548) significantly decreased, with statistically significant differences (P<0.05). The CVI (t=4.980, 4.201, 4.716, 8.491), CVV (t=9.014, 7.156, 7.719, 10.730), and CT (t=10.077, 8.700, 8.960, 11.704) in the upper, temporal, lower, and lower nasal quadrants within 6 mm of the central fovea were significantly increased, with statistically significant differences (P<0.05). In the CSC group, the maximum CVI and CVV were (0.39±0.10)% and (1.09±0.42) mm3, respectively, on the nasal side of the affected eye. Upper CT was (476.02±100.89) μm. The nasal side CVI, CVV, and CT have the largest changes. The ROC curve analysis results showed that the area under the curve of CT, CVV, and CVI within 6 mm of the central region, macular region, and fovea was over than 0.5. Subcentral CT was the most specific for the diagnosis of CSC. ConclusionChoroidal biomarkers CVI, CVV, and CT in CSC patients increase, while CFA decreases. Central CT is the most specific for the diagnosis of CSC.
ObjectiveTo observe the clinical features of collateral circulation in different types of retinal vein occlusion. MethodsA retrospective clinical study. A total of 360 patients with monocular retinal vein occlusion diagnosed by ophthalmic examination in Department of Ophthalmology of Yunnan University Affiliated Hospital from December 2021 to December 2023 were included in the study. Among them, 157 males had 157 eyes and 203 females had 203 eyes. Age were (61.0±5.9) years. The duration of the disease from the onset of symptoms to the time of treatment was 3 days to 6 months. Macular branch vein occlusion (MBRVO), retinal branch vein occlusion (BRVO) and central retinal vein occlusion (CRVO) were observed in 67, 187 and 106 eyes, respectively. 210 eyes were with macular edema. All patients with macular edema were treated with anti-vascular endothelial growth factor (VEGF) by intravitreal injection. All eyes were examined by scanning source optical coherence tomography. The incidence, location, morphological characteristics, formation time of retinal collateral circulation and the effect of anti-VEGF drug on the formation of collateral circulation were observed. A short circuit in which blood vessels originating from the optic disc in the form of a blood loop return to the optic disc after the disc has been deformed for some time is defined as a short-circuited collateral circulation of the ciliary vessels of the optic disc. ResultsAfter 1 week of disease course, MBRVO and collateral circulation of BRVO affected eye were established. By 1 to 2 months, a relatively abundant and stable collateral circulation had been established. In the course of 2 to 3 months, the short-circuit collateral circulation of ciliary vessels in the optic disc of the affected eye gradually formed. At 6 months, collateral circulation was established in 36 eyes (53.7%, 36/67) in 67 MBRVO patients. Collateral circulation was observed in 187 eyes of BRVO patients (100.0%, 187/187). In 106 eyes with CRVO, collateral circulation was established in 29 eyes (18.1%, 29/106). In 36 eyes with MBRVO, collateral circulation was established at the vertical horizontal slit between the blocked area and the non-blocked area. In 187 eyes of BRVO patients, collateral circulation was established in the vertical horizontal slit between the blocked and non-blocked areas in 102 eyes; 54 eyes were blocked the most central bypass to the collateral circulation on normal blood vessels. The collateral circulation of 19 eyes was established through nasal and temporal side. Collateral circulation through the fovea was established in 12 eyes. Its morphology is straight out of shape, spiral sinuous and flower cluster. CRVO established collateral circulation in 29 eyes, all of which had short-circuit collateral circulation of ciliary vessels. In 210 eyes treated with anti-VEGF drugs, collateral circulation was established in 160 eyes. Among them, 32 eyes were MBRVO (50.7%, 32/63), BRVO 119 eyes (100.0%, 119/119), CRVO 9 eyes (32.1%, 9/28). ConclusionsThe incidence of collateral circulation of MBRVO, BRVO and CRVO is 53.7%, 100.0% and 18.1%, respectively. The forms of MBRVO were varied and the course of disease is about 2 months. Anti-VEGF therapy did not inhibit the establishment of collateral circulation.
ObjectiveTo observe the changes of macular structure and microvessels in eyes with diabetes macular ischemia (DMI). MethodsA retrospective case study. From January 2023 to July 2023, 23 patients of 31 eyes diagnosed with DMI at Tangshan Ophthalmological Hospital were included in this study. Among them, there were 14 males with 23 eyes; Female cases with 8 eyes. Age were (59.5±4.6) years old. According to the DMI grading standard formulated by the research group for early treatment of diabetes retinopathy, the patients were divided into mild DMI group, moderate DMI group, and severe DMI group, with 8, 12, and 11 eyes respectively. The blood flow density (VD), perfusion area (FA), small vessel VD (SVD), inner retinal capillary plexus VD, FA, and outer retinal, choroidal, and ganglion cell complex (GCC) thickness within 1 mm of the macular fovea in retinal superficial vascular plexus (SVP)were measured using a scanning frequency light source optical coherence tomography instrument. The changes in macular structure and microvasculature in the affected eyes of different degrees of DMI groups were compared and observed. Inter group comparisons were conducted using one-way ANOVA or Kruskal Wallis H-test. Spearman correlation analysis was used to analyze the correlation between DMI severity and GCC, outer retina, choroid thickness, VD, FA and SVP VD, SVD and FA in inner retina. ResultsThe GCC (F=70.670), outer retinal thickness (H=12.393), VD (F=105.506), SVD (H=25.300), FA (F=107.655), and VD (H=24.098) and FA (H=25.300) of the retinal SVP in the mild, moderate, and severe DMI groups were compared, and the differences were statistically significant (P<0.05). There was no statistically significant difference in choroidal thickness (H=2.441, P>0.05). Pairwise comparison between groups: VD, SVD, FA of GCC thickness and SVP, and VD of inner retina were statistically significant between severe DMI group and moderate DMI group, and between moderate DMI group and mild DMI group (P<0.05). The thickness of outer retina was statistically significant between severe DMI group and moderate DMI group (P<0.05). Inner retinal FA: there were statistically significant differences between severe DMI group, moderate DMI group and mild DMI group (P<0.05). The correlation analysis results showed that GCC (rs=-0.918), outer retinal thickness (rs=-0.448), and inner retinal VD (rs=-0.894) and FA (rs=-0.918), as well as VD (rs=-0.919), SVD (rs=-0.924), and FA (rs=-0.939) of retinal SVP, were all negatively correlated with the degree of DMI (P<0.05). There was no correlation between choroidal thickness and degree of DMI (rs=-0.081, P>0.05). ConclusionThe thickness of GCC, outer retina and choroid, the VD, SVD, and FA of the retinal SVP, the VD and FA of inner retina are all reduced in eyes with different degrees of DMI, while all of them are negatively correlated with the degree of DMI, except for choroid thickness.