ObjectiveTo analyze the influencing factors of acute exacerbation readmission in elderly patients with chronic obstructive pulmonary disease (COPD) within 30 days, construct and validate the risk prediction model.MethodsA total of 1120 elderly patients with COPD in the respiratory department of 13 general hospitals in Ningxia from April 2019 to August 2020 were selected by convenience sampling method and followed up until 30 days after discharge. According to the time of filling in the questionnaire, 784 patients who entered the study first served as the modeling group, and 336 patients who entered the study later served as the validation group to verify the prediction effect of the model.ResultsEducation level, smoking status, number of acute exacerbations of COPD hospitalizations in the past 1 year, regular use of medication, rehabilitation and exercise, nutritional status and seasonal factors were the influencing factors of patients’ readmission to hospital. The risk prediction model was constructed: Z=–8.225–0.310×assignment of education level+0.564×assignment of smoking status+0.873×assignment of number of acute exacerbations of COPD hospitalizations in the past 1 year+0.779×assignment of regular use of medication+0.617×assignment of rehabilitation and exercise +0.970×assignment of nutritional status+assignment of seasonal factors [1.170×spring (0, 1)+0.793×autumn (0, 1)+1.488×winter (0, 1)]. The area under ROC curve was 0.746, the sensitivity was 75.90%, and the specificity was 64.30%. Hosmer-Lemeshow test showed that P=0.278. Results of model validation showed that the sensitivity, the specificity and the accuracy were 69.44%, 85.71% and 81.56%, respectively.ConclusionsEducation level, smoking status, number of acute exacerbations of COPD hospitalizations in the past 1 year, regular use of medication, rehabilitation and exercise, nutritional status and seasonal factors are the influencing factors of patients’ readmission to hospital. The risk prediction model is constructed based on these factor. This model has good prediction effect, can provide reference for the medical staff to take preventive treatment and nursing measures for high-risk patients.
The implantation of left ventricular assist device (LVAD) has significantly improved the quality of life for patients with end-stage heart failure. However, it is associated with the risk of complications, with unplanned readmissions gaining increasing attention. This article reviews the influencing factors, prediction methods and models, and intervention measures for unplanned readmissions in LVAD patients, aiming to provide scientific guidance for clinical practice, assist healthcare professionals in accurately assessing patients' conditions, and develop rational care plans.
ObjectiveTo systematically review the risk prediction models for readmission within 30 days after discharge in patients with chronic obstructive pulmonary disease (COPD), and provide a reference for clinical selection of risk assessment tools. MethodsDatabases including CNKI, Wanfang Data, VIP, CBM, PubMed, Embase, Web of Science, and Cochrane Library were searched for literature on this topic. The search time was from the inception of the database to April 25, 2023. Literature screening and data extraction were performed by two researchers independently. The risk of bias and applicability of the included literature were evaluated using the risk of bias assessment tool for predictive model studies. ResultsA total of 8 studies were included, including 14 risk prediction models for 30-day readmission of COPD patients after discharge. The total sample size was 125~8 263, the number of outcome events was 24~741, and the area under the receiver operating characteristic curve was 0.58~0.918. The top five most common predictors included in the model were smoking, comorbidities, age, education level, and home oxygen therapy. Although five studies had good applicability, all eight studies had a certain risk of bias. This is mainly due to the small sample size of the model, lack of reporting of blinding, lack of external validation, and inappropriate handling of missing data. ConclusionThe overall prediction performance of the risk prediction model for 30-day readmission of patients with COPD after discharge is good, but the overall research quality is low. In the future, the model should be continuously improved to provide a scientific assessment tool for the early clinical identification of patients with COPD at high risk of readmission within 30 days after discharge.
ObjectiveTo understand the current situation of unplanned readmission of colorectal cancer patients within 30 days after discharge under the enhanced recovery after surgery (ERAS) mode, and to explore the influencing factors.MethodsFrom May 7, 2018 to May 29, 2020, 315 patients with colorectal cancer treated by Department of Gastrointestinal Surgery, West China Hospital, Sichuan University and managed by ERAS process during perioperative period were prospectively selected as the research objects. The general data, clinical disease data and discharge readiness of patients were obtained by questionnaire and electronic medical record. Telephone follow-up was used to find out whether the patient had unplanned readmission 30 days after discharge and logistic regression was used to analyze the influencing factors of unplanned readmission within 30 days after discharge.ResultsWithin 30 days after discharge, 37 patients were admitted to hospital again, the unplanned readmission rate was 11.7%. The primary cause of readmission was wound infection. Logistic regression analysis showed that the body mass decreased by more than 10% in recent half a year (OR=2.611, P=0.031), tumor location in rectum (OR=3.739, P=0.026), operative time ≤3 hours (OR=0.292, P=0.004), and discharge readiness (OR=0.967, P<0.001) were independent predictors of unplanned readmission.ConclusionsUnder the ERAS mode, the readmission rate of colorectal cancer patients within 30 days after discharge is not optimistic. Attention should be focused on patients with significant weight loss, rectal cancer, more than 3 hours of operative time, and low readiness for discharge. Among them, the patient’s body weight and discharge readiness are the factors that can be easily improved by clinical intervention. It can be considered as a new way to reduce the rate of unplanned readmission by improving the patients’ physical quality and carrying out discharge care program.
ObjectiveTo investigate the factors associated with unplanned readmission within 30 days after discharge in adult patients who underwent coronary artery bypass grafting (CABG) and to develop and validate a risk prediction model. MethodsA retrospective analysis was conducted on the clinical data of patients who underwent isolated CABG at the Nanjing First Hospital between January 2020 and June 2024. Data from January 2020 to August 2023 were used as a training set, and data from September 2023 to June 2024 were used as a validation set. In the training set, patients were divided into a readmission group and a non-readmission group based on whether they had unplanned readmission within 30 days post-discharge. Clinical data between the two groups were compared, and logistic regression was performed to identify independent risk factors for unplanned readmission. A risk prediction model and a nomogram were constructed, and internal validation was performed to assess the model’s performance. The validation set was used for validation. ResultsA total of 2 460 patients were included, comprising 1 787 males and 673 females, with a median age of 70 (34, 89) years. The training set included 1 932 patients, and the validation set included 528 patients. In the training set, there were statistically significant differences between the readmission group (79 patients) and the non-readmission group (1 853 patients) in terms of gender, age, carotid artery stenosis, history of myocardial infarction, preoperative anemia, and heart failure classification (P<0.05). The main causes of readmission were poor wound healing, postoperative pulmonary infections, and new-onset atrial fibrillation. Multivariable logistic regression analysis revealed that females [OR=1.659, 95%CI (1.022, 2.692), P=0.041], age [OR=1.042, 95%CI (1.011, 1.075), P=0.008], carotid artery stenosis [OR=1.680, 95%CI (1.130, 2.496), P=0.010], duration of first ICU stay [OR=1.359, 95%CI (1.195, 1.545), P<0.001], and the second ICU admission [OR=4.142, 95%CI (1.507, 11.383), P=0.006] were independent risk factors for unplanned readmission. In the internal validation, the area under the curve (AUC) was 0.806, and the net benefit rate of the clinical decision curve analysis (DCA) was >3%. In the validation set, the AUC was 0.732, and the DCA net benefit rate ranged from 3% to 48%. ConclusionFemales, age, carotid artery stenosis, duration of first ICU stay, and second ICU admission are independent risk factors for unplanned readmission within 30 days after isolated CABG. The constructed nomogram demonstrates good predictive power.
ObjectiveTo investigate the influencing factors of unplanned readmission in patients with chronic obstructive pulmonary disease (COPD) within 1 year, construct a risk prediction model and evaluate its effect. MethodsClinical data of 403 inpatients with COPD were continuously collected from January 2023 to May 2023, including 170 cases in the readmission group and 233 cases in the non readmission group. LASSO regression was applied to screen the optimized variables and multivariate logistic regression analyses were applied to explore the risk factors of unplanned readmission in patients with COPD within 1 year. After that a nomogram prediction model was constructed and evaluated its discrimination, calibration, and clinical applicability. ResultsThe incidence of unplanned readmission in patients with COPD within 1 year was 42.2%. Respiratory failure, number of acute exacerbation in the last year, creatinine and white blood cell count were risk factors for unplanned admission of patients with COPD within one year (P<0.05). Creatinine, white blood cell count, the number of acute exacerbation in the last year, the course of disease, concomitant respiratory failure and high uric acid were included in the nomogram model, the area under curve (AUC) and its 95% confidential interval (CI) of the nomogram model was 0.687 (0.636 - 0.739), with the sensitivity, specificity, and accuracy were 0.824, 0.742 and 0.603, respectively. The AUC of the nomogram after re-sampling 1 000 times was 0.687 (0.634 - 0.739). The calibration curve showed a high degree of three line overlap and the clinical decision curve showed that the nomogram model provided better net benefits than the treat-all tactics or the treat-none tactics with threshold probabilities of 15.0% - 55.0%. ConclusionThe nomogram model constructed based on creatinine, white blood cell count, the number of acute exacerbation in the last year, the course of disease, concomitant respiratory failure and high uric acid has good predictive value for unplanned readmission in patients with COPD within 1 year.
Objective To construct an information hospital service system and discuss the application effect of information construction in the hospital service center. Methods Patients admitted to West China Hospital of Sichuan University between June 2022 and January 2023 were selected. We innovatively practiced intelligent safety gate, self-appointment admission registration, pre-hospital examination and advance migration, pre-hospital health education, an age-appropriate transformation of information service, and other information service measures to investigate the medical experience of patients, and compared patients’ satisfaction with medical treatment under four admission management methods (Huayitong APP, WeChat, self-service machine, and manual management). Results A total of 1452 patients were surveyed. The overall satisfaction score for medical treatment of patients was (4.98±0.04) points. Among them, Huayitong APP was (4.99±0.03) points, WeChat was (4.98±0.13) points, self-service machine was (4.97±0.05) points, and manual treatment was (4.92±0.11) points. There was a statistically significant difference between groups in overall satisfaction with different admission procedures (F=68.582, P<0.001). Since the information construction of the hospital admission service center was carried out, the average time of admission was (12.4±2.3) minutes, and 89.4% (1 298/1 452) of patients thought the time of admission was ideal. Conclusions The information construction of a hospital admission service center can effectively improve patients’ medical experience and enhance patient satisfaction. In the future, it is necessary to explore the influencing factors of patients’ satisfaction with information construction, and constantly improve and upgrade the information construction of hospital admission service centers.
Objective To analyze the influencing factors of unplanned readmission for day surgery patients under the centralized management mode, and to provide a scientific basis for improving the medical quality and safety of day surgery. Methods The data of patients in the day surgery ward of the Second Affiliated Hospital Zhejiang University School of Medicine between October 2017 and October 2021 were retrospectively collected, and they were divided into an unplanned readmission group and a control group according to whether they were unplanned readmission within 31 days. Multivariate logistic regression model was used to analyze the influencing factors of patients’ unplanned readmission within 31 days. Results There were 30 636 patients, of which 46 were unplanned readmission patients, accounting for 0.15%. Logistic regression analysis showed that male [odds ratio (OR)=0.425, 95% confidence interval (CI) (0.233, 0.776), P=0.005], thyroid surgery [OR=19.938, 95%CI (7.829, 50.775), P<0.001], thoracoscopic partial lobectomy [OR=13.481, 95%CI (5.835, 31.148), P<0.001], laparoscopic cholecystectomy [OR=10.593, 95%CI (3.918, 28.641), P<0.001] and hemorrhoidectomy [OR=13.301, 95%CI (4.473, 39.550), P<0.001] were risk factors for unplanned readmission in patients undergoing day surgery. Conclusion Medical staff in day surgery wards need to strengthen supervision of male patients and high risk surgical patients, and improve patients’ awareness of recovery, so as to reduce the rate of unplanned readmission.
By learning the nearly ten years’ experience and summaries in day surgery, West China Hospital of Sichuan University drafts a series of standards for day surgery management. This article mainly introduces the pre-administration management standards of West China Hospital of Sichuan University, involving: standards for the management of surgeons, nurses, patients, and the type of operation; standards for pre-administration work procedure; standards for pre-administration health education; standards for appointment, scheduling, and coordination for day surgery; and standards for surgery notification. This paper aims to share experience with peer professionals, and provide theoretical basis and practical guidance for the standardization and development of day surgery, as well as the establishment of a safe day surgery management system.