Objective To investigate the operative procedure and the cl inical results of reverse lateral tarsal artery flap in treating forefoot skin and soft tissue defect. Methods From August 2007 to April 2009, 11 patients with forefoot skin and soft tissue defect were treated with reverse lateral tarsal artery flaps, including 7 males and 4 females aged from 16 to 60 years(36 years on average). Of 11 cases, defects were caused by crash in 5 cases, by grind contusion in 3 cases and the course disease was 4-12 hours; by tumor extended resection in 3 cases and the disease course was 3-12 months. There were 5 wounds on the dorsum of first metatarsophalangeal joint, 2 on the dorsum of the first toes, and 4 on the dorsum of distal part of metatarsal bones. The area of defect ranged from 4 cm × 2 cm to 6 cm × 5 cm. There were 6 cases of tendon exposure, 4 cases of tendon defect with bone exposure, and 1 case of tendon defect with open dislocation of metatarsophalangeal joint. The flap was designed with dorsal artery of foot as its pedicle. The plantar perforating branch was designed as its rotating point. And the flaps were transferred retrogradely to repair the forefoot wounds. The flap area ranged from 4.5 cm × 2.5 cm to 6.5 cm × 4.5 cm. The lateral dorsal nerve of foot was anastomosed with the nerve in wound area in 7 cases. Donor site was covered by full thickness skin graft. Results Partial necrosis occurred and was cured by dressing change, followed by skin graft in 2 cases. The flaps survived and primary heal ing was achieved in the other 9 cases. All the skin grafts of donor site survived and primary heal ing wasachieved after operation. All the patients were followed up for 6 months to 2 years, averaged 13 months. The texture and color of the flap were similar to skin at the recipient site. All patients returned to normal in walking and running and no ulceration occurred. The two point discrimination was 5-12 mm 6 months after operation in 7 patients who received nerve anastomosis, while only protective sensation recovered partly in the other 4 patients whose cutaneous nerve were not anastomosed. Conclusion Reverse lateral tarsal artery flap has the perfect shape and its blood vessel is constant. The blood pedicle is thick and long enough when transferred retrogradely. The flap is a good choice in the treatment of forefoot skin and soft tissue defect.
Objective To investigate the surgical methods and cl inical results of reconstructing soft tissue defects in dorsum of forefoot with distally based saphenous neurocutaneous flap of lower rotating point. Methods From January 2005 to August 2007, 6 cases of soft tissue defects in dorsum of forefoot, including 4 males and 2 females aged 28-53 years, were treated with the distally based saphenous neurocutaneous flaps of lower rotating point. The soft tissue defect was in left foot in 2 cases and in right foot in 4 cases. Five cases of soft tissue defects were caused by crush, and 1 case was caused by traffic accident. Tendons and bones were exposed in all cases. The defects after debridement were 7.0 cm × 5.0 cm to 9.0 cm × 5.5 cm in size. Emergency operation was performed in 2 cases and selective operation in 4 cases. Rotating point of the flaps was from 1 to 3 cm above medial malleolus. The size of the flaps ranged from 8.0 cm × 6.0 cm to 13.0 cm × 6.5 cm. Neuroanastomosis was performed in 2 cases of the flaps. Skin defects in donor site were repaired with thickness skin graft. Results Four cases of the transferred flaps survived completely and the other 2 cases began to swell and emerge water bl ister from the distant end of the flap after operation, which resulted in distal superficial necrosis of flaps, heal ing was achieved after change dressings and skin grafted. Skin graft in donor site survived completely in all cases. All cases were followed up from 6 to 18 months. The color and texture and thickness of theflaps were similar to reci pient site. Pain sensation and warmth sensation of the 2 flaps whose cutaneous nerve were anastomosed recovered completely, two point discrimination were 8 mm and 9 mm respectively. Sensation and warmth sensation of the 4 flaps whose cutaneous nerve were not anastomosed recovered partly. All patients returned to their normal walking and running activities and no ulceration occurred. No donor site morbidity was encountered. Conclusion Blood supply of the distally based saphenous neurocutaneous flap of lower rotating point is sufficient, the flap is especially useful for repair of soft tissue defects in dorsum of forefoot.
ObjectiveTo evaluate the effectiveness of repairing or reconstructing defects of the forefoot. MethodsBetween February 2006 and February 2013, 57 patients with defects of the forefoot were treated. There were 41 males and 16 females with an average age of 38.9 years (range, 19-68 years). The disease causes included motor vehicles crush injury in 28 cases, crashing injury in 17 cases, and machine extrusion injury in 12 cases. The left side was involved in 25 cases and the right side in 32 cases, with a mean disease duration of 4.7 hours (range, 0.5-75.0 hours). Defect located at the 1st metatarsus in 9 cases, at the 5th metatarsus in 8 cases, at the 1st and the 2nd metatarsus in 16 cases, at the 4th and 5th metatarsus in 11 cases, at multiple metatarsus and the forefoot in 13 cases. The bone defect ranged from 2.5 cm×1.9 cm×1.4 cm to 13.3 cm×11.2 cm×2.7 cm. The soft tissue defect ranged from 12.4 cm×6.3 cm to 27.2 cm×18.7 cm. The iliac bone or vascularized iliac bone or vascularized fibula bone was used to rebuild the arch of the foot, and free flap was used to repair defects of the forefoot. The donor site was sutured directly or covered with skin graft. ResultsVenous crisis and partial necrosis occurred in 3 and 2 flaps respectively, which healed after symptomatic treatment. The other flaps and grafted skins survived, and wounds healed primarily. Fifty-one cases were followed up 1.5-2.5 years (mean, 2.1 years). The appearance was excellent and the feeling of the flap recovered at different levels. The two-point discrimination was 8.4-19.8 mm (mean, 13.7 mm) at 1.5 years after operation. According to upper extremity functional evaluation standard by hand surgery branch of Chinese Medical Association, sensation recovered to S2 in 6 cases, to S3 in 18 cases, and to S4 in 27 cases. The patients began to walk with weight loading at 2-6 months after operation (mean, 3.9 months). The bone healing time was 3-6 months (mean, 4.2 months). Based on American Orthopaedic Foot and Ankle Society (AOFAS) standards, the results were excellent in 19 cases, good in 24 cases, fair in 7 case, and poor in 1 case, and the excellent and good rate was 84.3%. ConclusionIt is a good solution to treat defects of the forefoot to use iliac bone or vascularized iliac bone or vascularized fibula bone for rebuilding the arch of the foot and use free flap for repairing defect.
Objective To investigate the operative techniques and cl inical results of the superficial peroneal neurofasciocutaneous flap based on the distal perforating branch of peroneal artery in repairing donor site defect of forefoot. Methods From March 2005 to October 2007, 15 patients (11 males and 4 females, aged 20-45 years with an average of 33.6 years) with finger defects resulting from either machine crush (12 cases) or car accidents (3 cases) were treated, including 12 cases of thumb defect, 2 of II-V finger defect and 1 of all fingers defect. Among them, 6 cases were reconstructed with immediate toe-to-hand free transplantation after injury, and 9 cases were reconstructed at 3-5 months after injury. The donor site soft tissue defects of forefoot were 6 cm × 4 cm-12 cm × 6 cm in size, and the superficial peroneal neruofasciocutaneousflaps ranging from 10 cm × 4 cm to 14 cm × 6 cm were adopted to repair the donor site defects after taking the escending branch of the distal perforating branch of peroneal artery as flap rotation axis. The donor sites in all cases were covered with intermediate spl it thickness skin grafts. Results All flaps survived and all wounds healed by first intention. All reconstructed fingers survived completely except one index finger, which suffered from necrosis. Over the 6-18 months follow-up period (mean 11 months), the texture and appearance of all the flaps were good, with two-point discriminations ranging from 10-13 mm, and all patients had satisfactory recovery of foot function. No obvious discomfort and neuroma were observed in the skin-graft donor sites. The feel ing of all the reconstructed fingers recovered to a certain degree, so did the grabbing function. Conclusion Due to its rel iable blood supply, no sacrifice of vascular trunks, favorable texture and thickness and simple operative procedure, the superficial peroneal neurofasciocutaneous flap based on the distal perforating branch of peroneal artery is effective to repair the donor site defect in forefoot caused by finger reconstruction with free toe-to-hand transplantation.