Cardiovascular disease has caused a huge burden of disease worldwide, and the rapid advancement of smart wearable devices has provided new means for early diagnosis, real-time monitoring, and event prevention of cardiovascular disease. Smart wearable devices can be classified into various categories based on detection signals and physical carrier types. Based on an overview of the composition of such devices, this article further introduces the current cutting-edge research and related market products related to smart blood pressure monitoring, electrocardiogram monitoring, and ultrasound monitoring. It also discusses the future development and challenges of such devices, aiming to provide evidence support for the research and development of smart wearable devices in the diagnosis and treatment of cardiovascular diseases in the future.
The gait acquisition system can be used for gait analysis. The traditional wearable gait acquisition system will lead to large errors in gait parameters due to different wearing positions of sensors. The gait acquisition system based on marker method is expensive and needs to be used by combining with the force measurement system under the guidance of rehabilitation doctors. Due to the complex operation, it is inconvenient for clinical application. In this paper, a gait signal acquisition system that combines foot pressure detection and Azure Kinect system is designed. Fifteen subjects are organized to participate in gait test, and relevant data are collected. The calculation method of gait spatiotemporal parameters and joint angle parameters is proposed, and the consistency analysis and error analysis of the gait parameters of proposed system and camera marking method are carried out. The results show that the parameters obtained by the two systems have good consistency (Pearson correlation coefficient r ≥ 0.9, P < 0.05) and have small error (root mean square error of gait parameters is less than 0.1, root mean square error of joint angle parameters is less than 6). In conclusion, the gait acquisition system and its parameter extraction method proposed in this paper can provide reliable data acquisition results as a theoretical basis for gait feature analysis in clinical medicine.
ObjectiveTo explore the reliability and safety of continuous monitoring of vital signs in patients using wireless wearable monitoring devices after video-assisted thoracoscopic surgery (VATS) for lung cancer. MethodsThe patients undergoing VATS for lung cancer in West China Hospital, Sichuan University from May to August 2023 were prospectively enrolled. Both wireless wearable and traditional wired devices were used to monitor the vital signs of patients after surgery. Spearman correlation analysis, paired sample t test and ratio Bland-Altman method were used to test the correlation, difference and consistency of monitoring data measured by the two devices. The effective monitoring rate of the wireless wearable device within 12 hours was calculated to test the reliability of its continuous monitoring. ResultsA total of 20 patients were enrolled, including 15 females and 5 males with an average age of 46.20±11.52 years. Data collected by the two monitoring devices were significantly correlated (P<0.001). Respiratory rate and blood oxygen saturation data collected by the two devices showed no statistical difference (P>0.05), while heart rate measured by wireless wearable device was slightly lower (\begin{document}$ \bar{d} $\end{document}=−0.307±1.073, P<0.001), and the blood pressure (\begin{document}$ \bar{d} $\end{document}=1.259±5.354, P<0.001) and body temperature(\begin{document}$ \bar{d} $\end{document}=0.115±0.231, P<0.001) were slightly higher. The mean ratios of heart rate, respiratory rate, blood oxygen saturation, blood pressure and body temperature collected by the two devices were 0.996, 1.004, 1.000, 1.014, and 1.003, respectively. The 95% limits of agreement (LoA) and 95% confidence interval of 95%LoA of each indicator were within the clinically acceptable limit. The effective monitoring rate of each vital signs within 12 hours was above 98%. ConclusionThe wireless wearable device has a high accuracy and reliability for continuous monitoring vital signs of patients after VATS for lung cancer, which provides a security guarantee for subsequent large-scale clinical application and further research.
Wearable monitoring, which has the advantages of continuous monitoring for a long time with low physiological and psychological load, represents a future development direction of monitoring technology. Based on wearable physiological monitoring technology, combined with Internet of Things (IoT) and artificial intelligence technology, this paper has developed an intelligent monitoring system, including wearable hardware, ward Internet of Things platform, continuous physiological data analysis algorithm and software. We explored the clinical value of continuous physiological data using this system through a lot of clinical practices. And four value points were given, namely, real-time monitoring, disease assessment, prediction and early warning, and rehabilitation training. Depending on the real clinical environment, we explored the mode of applying wearable technology in general ward monitoring, cardiopulmonary rehabilitation, and integrated monitoring inside and outside the hospital. The research results show that this monitoring system can be effectively used for monitoring of patients in hospital, evaluation and training of patients’ cardiopulmonary function, and management of patients outside hospital.
Wearable devices, as an important component of digital health, are gradually penetrating into the clinical nursing field. This paper explores the current applications of wearable devices in the field of clinical nursing, with a focus on their significant roles in real-time monitoring of physiological parameters, disease management, functional rehabilitation exercises. Additionally, it analyzes the challenges these devices face, such as the need for standardized development, data security and privacy protection, and cost-benefit analysis. This paper also proposes measures to address these challenges, including enhancing policy formulation, promoting standardization, and fostering technological innovation, with the aim of providing valuable insights for the advancement of high-quality clinical nursing practices.
Considering the importance of the human respiratory signal detection and based on the Cole-Cole bio-impedance model, we developed a wearable device for detecting human respiratory signal. The device can be used to analyze the impedance characteristics of human body at different frequencies based on the bio-impedance theory. The device is also based on the method of proportion measurement to design a high signal to noise ratio (SNR) circuit to get human respiratory signal. In order to obtain the waveform of the respiratory signal and the value of the respiration rate, we used the techniques of discrete Fourier transform (DFT) and dynamic difference threshold peak detection. Experiments showed that this system was valid, and we could see that it could accurately detect the waveform of respiration and the detection accuracy rate of respiratory wave peak point detection results was over 98%. So it can meet the needs of the actual breath test.
In order to improve the accuracy of blood pressure measurement in wearable devices, this paper presents a method for detecting blood pressure based on multiple parameters of pulse wave. Based on regression analysis between blood pressure and the characteristic parameters of pulse wave, such as the pulse wave transit time (PWTT), cardiac output, coefficient of pulse wave, the average slope of the ascending branch, heart rate, etc. we established a model to calculate blood pressure. For overcoming the application deficiencies caused by measuring ECG in wearable device, such as replacing electrodes and ECG lead sets which are not convenient, we calculated the PWTT with heart sound as reference (PWTTPCG). We experimentally verified the detection of blood pressure based on PWTTPCG and based on multiple parameters of pulse wave. The experiment results showed that it was feasible to calculate the PWTT from PWTTPCG. The mean measurement error of the systolic and diastolic blood pressure calculated by the model based on multiple parameters of pulse wave is 1.62 mm Hg and 1.12 mm Hg, increased by 57% and 53% compared to those of the model based on simple parameter. This method has more measurement accuracy.
Breathing pattern parameters refer to the characteristic pattern parameters of respiratory movements, including the breathing amplitude and cycle, chest and abdomen contribution, coordination, etc. It is of great importance to analyze the breathing pattern parameters quantificationally when exploring the pathophysiological variations of breathing and providing instructions on pulmonary rehabilitation training. Our study provided detailed method to quantify breathing pattern parameters including respiratory rate, inspiratory time, expiratory time, inspiratory time proportion, tidal volume, chest respiratory contribution ratio, thoracoabdominal phase difference and peak inspiratory flow. We also brought in “respiratory signal quality index” to deal with the quality evaluation and quantification analysis of long-term thoracic-abdominal respiratory movement signal recorded, and proposed the way of analyzing the variance of breathing pattern parameters. On this basis, we collected chest and abdomen respiratory movement signals in 23 chronic obstructive pulmonary disease (COPD) patients and 22 normal pulmonary function subjects under spontaneous state in a 15 minute-interval using portable cardio-pulmonary monitoring system. We then quantified subjects’ breathing pattern parameters and variability. The results showed great difference between the COPD patients and the controls in terms of respiratory rate, inspiratory time, expiratory time, thoracoabdominal phase difference and peak inspiratory flow. COPD patients also showed greater variance of breathing pattern parameters than the controls, and unsynchronized thoracic-abdominal movements were even observed among several patients. Therefore, the quantification and analyzing method of breathing pattern parameters based on the portable cardiopulmonary parameters monitoring system might assist the diagnosis and assessment of respiratory system diseases and hopefully provide new parameters and indexes for monitoring the physical status of patients with cardiopulmonary disease.
ObjectiveWearable devices refer to a class of monitoring devices that can be tightly integrated with the human body and are designed to continuously monitor individual's activity without impeding or restricting the user's normal activities in the process. With the rapid advancement of chips, sensors, and artificial intelligence technologies, such devices have been widely used for patients with cardiovascular diseases who require continuous health monitoring. These patients require continuous monitoring of a number of physiological indicators to assess disease progression, treatment efficacy, and recovery in the early stages of the disease, during the treatment, and in the recovery period. Traditional monitoring methods require patients to see a doctor on a regular basis with the help of fixed devices and analysis by doctors, which not only increases the financial burden of patients, but also consumes medical resources and time. However, wearable devices can collect data in real time and transmit it directly to doctors via the network, thus providing an efficient and cost-effective monitoring solution for patients. In this paper, we will review the applications, advantages and challenges of wearable devices in the treatment of cardiovascular diseases, as well as the outlook for their future applications.
Lower limb ankle exoskeletons have been used to improve walking efficiency and assist the elderly and patients with motor dysfunction in daily activities or rehabilitation training, while the assistance patterns may influence the wearer’s lower limb muscle activities and coordination patterns. In this paper, we aim to evaluate the effects of different ankle exoskeleton assistance patterns on wearer’s lower limb muscle activities and coordination patterns. A tethered ankle exoskeleton with nine assistance patterns that combined with differenet actuation timing values and torque magnitude levels was used to assist human walking. Lower limb muscle surface electromyography signals were collected from 7 participants walking on a treadmill at a speed of 1.25 m/s. Results showed that the soleus muscle activities were significantly reduced during assisted walking. In one assistance pattern with peak time in 49% of stride and peak torque at 0.7 N·m/kg, the soleus muscle activity was decreased by (38.5 ± 10.8)%. Compared with actuation timing, the assistance torque magnitude had a more significant influence on soleus muscle activity. In all assistance patterns, the eight lower limb muscle activities could be decomposed to five basic muscle synergies. The muscle synergies changed little under assistance with appropriate actuation timing and torque magnitude. Besides, co-contraction indexs of soleus and tibialis anterior, rectus femoris and semitendinosus under exoskeleton assistance were higher than normal walking. Our results are expected to help to understand how healthy wearers adjust their neuromuscular control mechanisms to adapt to different exoskeleton assistance patterns, and provide reference to select appropriate assistance to improve walking efficiency.