ObjectiveNumerous foreign researches focused on the changes of EEG during the developmental periods from the newborn to late adulthood. However, the EEG changes of healthy Chinese people is still rare. Therefore, we examined the EEG of 2 357 healthy Chinese people.MethodsIn 1982, guided by Prof. Feng, we analysed the waking EEG of 2 357 healthy people, from 2 to above 60 years old, including open eyes induction test and hyperventilation.ResultsAt age 2 ~ 4, the posterior basic rhythms has reached 8 ~ 9 Hz, but the rhythms were unregular pattern. After age 7, the rhythms were 9 Hz, α index was more than 60%, the amplitude was higher than other ages. At age 12 ~ 14, the main rhythms was 10 Hz, the same as adulthood, α index was 70% ~ 80%. After this age, the amplitude of α rhythm deceased gradually. Above 60 years old, the main rhythm was 9 Hz, α index <60%, the amplitude was lower than adulthood. At age 14 ~ 16, the θ index in frontal and temporal regions was 6%, the same as the adulthood. At age 18 ~ 20, β index was 20%.ConclusionsIn the article, we analyzed the waking EEG of 2 357 healthy Chinese people in Beijing area. Although this multi-center study was accomplished at 1980s, the data is still of great value to the clinical EEG today.
Currently, about one-third of patients with anti-epilepsy drug or resective surgery continue to have sezure, the mechanism remin unknown. Up to date, the main target for presurgical evaluation is to determene the EZ and SOZ. Since the early nineties of the last century network theory was introduct into neurology, provide new insights into understanding the onset, propagation and termination. Focal seizure can impact the function of whole brain, but the abnormal pattern is differet to generalized seizure. Brain network is a conception of mathematics. According to the epilepsy, network node and hub are related to the treatment. Graphy theory and connectivity are main algorithms. Understanding the mechanism of epilepsy deeply, since study the theory of epilepsy network, can improve the planning of surgery, resection epileptogenesis zone, seizure onset zone and abnormal node of hub simultaneously, increase the effect of resectiv surgery and predict the surgery outcome. Eventually, develop new drugs for correct the abnormal network and increase the effect. Nowadays, there are many algorithms for the brain network. Cooperative study by the clinicans and biophysicists instituted standard and extensively applied algorithms is the precondition of widely used clinically.
Intracranial electrographic recording, especially stereoencephalography (SEEG), remains the gold standard for preoperative localization in epilepsy patients. However, this method is invasive and has low spatial resolution. In 1982, magnetoencephalography (MEG) began to be used in epilepsy clinics. MEG is not affected by the skull and scalp, can provide signals with high temporal and spatial resolution, and can be used to determine the epiletogensis zone (EZ) and the seizure onset zone (SOZ). Magnetic source imaging (MSI) is a method that superimposes the MEG data on a magnetic resonance image (MRI) and has become a major tool for presurgical localization. The applicability of MEG data has been largely improved by the development of many post-MRI processing methods in the last 20 years. In terms of the sensitivity of localization, MEG is superior to VEEG, MRI, PET and SPECT, despite inferiority to SEEG. MEG can also assist in the intracranial placement of electrodes and improve preoperative planning. Limitations of MEG include high cost, insensitivity to radiation source, and difficulty in locating deep EZ in the medial regions of the brain. These limitations could be overcome by new generations of equipment and improvement of algorithmics.